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Synopsis

At the beginning elements of the theory of reproducing kernel Hilbert spaces will be re-

called. It will be shown that existence of the reproducing kernel is equivalent to continuity

of the functionals of point evaluation. The proof that if H is a reproducing kernel Hilbert

space of functions defined on U , then in any set

{f ∈ H | f(z) = 1}, z ∈ U

if non-empty, there is exactly one element with minimal norm, will be given.

The second chapter will be devoted to the Hilbert spaces of square-integrable functions

which are the kernel (in the algebraic sense) of some elliptic operator. It will be shown

that such a space is a reproducing kernel Hilbert space. Then we will prove that the

reproducing kernel of that space depends in a continuous way on a weight of integration,

i.e. on a deformation of an inner product. Convergence of weights only almost everywhere

will be needed. Next we will generalize Ramadanov theorem, i.e. we will show that the

reproducing kernel of such a space depends in continuous way on a domain of integration,

i.e. on a domain on which our functions are defined. It will be done in three different

ways for the case an increasing sequence of domains. Moreover sufficient condition for the

case of decreasing sequence of domains will be given.

Particular case of such a Hilbert space is Hilbert space of square-integrable and har-

monic functions. In such a case it will be shown that if only an inverse of a weight of

integration is integrable in some positive power, then the reproducing kernel of the corre-
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sponding weighted Hilbert space exists. Moreover an example of a weight for which there

is no reproducing kernel of such a space will be given.

By the minimal norm property of the reproducing kernel recalled in the first chapter,

we will conclude that in the set of square-integrable solutions of an elliptic equation, which

take value at some given point equal to c, if non-empty, there is exactly one element with

minimal norm. Moreover such an element depends in continuous way on a weight and

domain of integration in a precisely defined sense.

The third chapter will be devoted to the weighted kernels of Szegö type. We will give

sufficient conditions for a weight of integration in order for the reproducing kernel of the

weighted Szegö space to exist. In particular it will be shown that if an inverse of a weight

of integration is integrable, then there exists the reproducing kernel of the corresponding

weighted Szegö space. The case of domains with non-connected boundaries will be also

considered. Moreover we will give an example of a weight for the unit ball for which there

is no reproducing kernel of the corresponding space. Using biholomorphisms we will prove

that such weights exist for a large class of domains.

Then we will prove that Szegö kernel depends in a continuous way on a weight of inte-

gration. Pasternak’s theorem on dependence of the orthogonal projector on a deformation

of an inner product will be used in the proof. Finally it will be shown how weighted Szegö

kernel can be used to prove general theorems of complex analysis.

Keywords: Reproducing kernel Hilbert space, functional of point evaluation, reproduc-

ing kernel, elliptic operator, elliptic equation, minimal solution, Szegö kernel, admissible

weights, weights of integration, dependence on parameters, continuous dependence, Ra-

madanov theorem, continuous dependence on a weight of integration.



Streszczenie

Na pocza̧tku przywo lane zostana̧ elementy teorii przestrzeni Hilberta z ja̧drem repro-

dukuja̧cym. Zostanie pokazane, że istnienie ja̧dra reprodukuja̧cego jest równoważne cia̧g loś-

ci funkcjona lów ewaluacji. Dany bȩdzie dowód, że jeśli H jest przestrzenia̧ Hilberta z

ja̧drem reprodukuja̧cym funkcji określonych na U , wówczas w dowolnym zbiorze

{f ∈ H | f(z) = 1}, z ∈ U

o ile jest niepusty, znajduje siȩ dok ladnie jeden element o minimalnej normie.

Drugi rozdzia l poświȩcony zostanie przestrzeniom Hilberta funkcji ca lkowalnych z

kwadratem, które sa̧ ja̧drem (w sensie algebraicznym) pewnego operatora eliptycznego.

Bȩdzie pokazane, że taka przestrzeń jest przestrzenia̧ Hilberta z ja̧drem reprodukuja̧cym.

Potem pokażemy, ze ja̧dro reprodukuja̧ce takiej przestrzeni zależy w sposób cia̧g ly od

wagi ca lkowania, tzn. od deformacji iloczynu skalarnego. Zbieżność wag zaledwie prawie

wszȩdzie bȩdzie potrzebna. Nastȩpnie uogólnimy twierdzenie Ramadanowa, tzn. pokażemy,

że ja̧dro reprodukuja̧ce takiej przestrzeni zależy w sposób cia̧g ly od obszaru ca lkowania,

tzn. od dziedziny, na której określone sa̧ nasze funkcje. Zostanie to zrobione na trzy

sposoby dla przypadku rosna̧cego cia̧gu obszarów. Ponadto zostanie podany warunek

wystarczaja̧cy dla przypadku maleja̧cego cia̧gu obszarów.

Szczególnym przypadkiem takiej przestrzeni jest przestrzeń funkcji ca lkowalnych z

kwadratem i harmonicznych. Dla tego przypadku bȩdzie pokazane, że jeśli tylko waga

ca lkowania jest ca lkowalna w jakiej́s dodatniej potȩdze, wówczas ja̧dro reprodukuja̧ce
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odpowiadaja̧cej ważonej przestrzeni Hilberta istnieje. Co wiȩcej podany bȩdzie przyk lad

wagi, dla której nie istnieje ja̧dro reprodukuja̧ce takiej przestrzeni.

Korzystaja̧c z w lasności minimalnej normy ja̧dra reprodukuja̧cego przywo lanej w roz-

dziale drugim, stwierdzimy, że w zbiorze ca lkowalnych z kwadratem rozwia̧zań równania

eliptycznego, które w pewnym zadanym punkcie przyjmuja̧ wartość c, o ile jest niepusty,

znajduje siȩ dok ladnie jeden element o minimalnej normie. Co wiȩcej, ten element zależy

w sposób cia̧g ly od wagi i od obszaru ca lkowania w ścísle określonym sensie.

Trzeci rozdzia l poświȩcony zostanie ważonym ja̧drom typu Szegö. Damy warunki

wystarczaja̧ce na wagȩ ca lkowania, aby istnia lo ja̧dro reprodukuja̧ce odpowiadaja̧cej ważo-

nej przestrzeni. W szczególności bȩdzie pokazane, że jeśli odwrotność wagi ca lkowania jest

ca lkowalna, to istnieje ja̧dro reprodukuja̧ce odpowiadaja̧cej ważonej przestrzeni Szegö.

Przypadek obszarów o niespójnych brzegach również bȩdzie rozważony. Co wiȩcej, damy

przyk lad wagi dla kuli jednostkowej, dla której nie istnieje ja̧dro reprodukuja̧ce odpowia-

daja̧cej przestrzeni. Używaja̧c bihomorfizmów, pokażemy, że takie wagi istnieja̧ dla sze-

rokich klas obszarów.

Później bȩdzie udowodnione, że ja̧dro Szegö zależy w sposób cia̧g ly od wagi ca lkowania.

Twierdzenie Pasternaka o zależności rzutu ortogonalnego od deformacji iloczynu skalarnego

zostanie użyte w dowodzie. Na koniec zostanie pokazane, jak ważone ja̧dro Szegö może

być użyte do udowodnienia ogólnych twierdzeń analizy zespolonej.

S lowa kluczowe: Przestrzeń Hilberta z ja̧drem reprodukuja̧cym, funkcjona l ewaluacji,

j̧adro reprodukuja̧ce, operator eliptyczny, równanie eliptyczne, minimalne rozwia̧zanie,

ja̧dro Szegö, wagi dopuszczalne, wagi ca lkowania, zależność od parametrów, cia̧g la zależ-

ność, twierdzenie Ramadanowa, cia̧g la zależność od wagi ca lkowania.
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Introduction

First papers in the theory of reproducing kernels were published one hundred years ago

by S. Zaremba, J. Mercer, S. Bochner, G. Szegö and S. Bergman (see [Zaremba1907],

[Mercer1909], [Bochner 1918], [Szegö 1921], [Bergman1922]; see also [Szafraniec2016], in

polish, for more details.) Now we know, however, that concept of a reproducing kernel is

more general and can be associated with an arbitrary Hilbert space of functions. Milestone

in the theory of reproducing kernels was paper by N. Aronszajn (see [Aronszajn 1950]).

For more modern approach see [Paulsen2016] or [Szafraniec 2004], the second one is in

polish.

In the first chapter for the reader’s convenience we recall elements of the theory of

reproducing kernel Hilbert spaces which will be used later. We show that the existence

of the reproducing kernel of a Hilbert space of functions is equivalent to the continuity of

functionals of point evaluation in that space. We also prove the ’minimal norm property’,

i.e. the fact that if the set of functions from our reproducing kernel Hilbert space which

have the value at some point equal to 1 is not empty, then there is exactly one function

with minimal norm.

The second chapter is devoted to reproducing kernel Hilbert spaces of solutions of

uniformly elliptic equation. V. M. Malyshev in 1997 (see [Malyshev1997]) considered

continuous embeddings of square-integrable functions from a kernel of hypoelliptic opera-

tor into the space of continuous functions. In this dissertation we will also consider Hilbert

spaces connected with the kernel of elliptic operator, but our space and reproducing kernel
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will be a different idea.

It can be shown that if an operator in the consideration is elliptic, then there exists

the reproducing kernel of Hilbert space of square-intregrable functions which are elements

of the kernel of some elliptic operator. Theory of Sobolev spaces is used there. We prove

that the dependence of such a kernel on a weight of integration, i.e. on a deformation

of an inner product, is continuous. Note that Z. Pasternak-Winiarski showed that a

classical Bergman kernel depends even in an analytic way on a weight of integration (see

[Pasternak1990]), but he assumed that weights converge in a pretty strong topology, while

we need only convergence of weights almost everywhere in the proof.

Next we show that a reproducing kernel of Malyshev type depends in the continuous

way on an increasing sequence of domains of integration, generalizing well-known Ra-

madanov Theorem (see [Ramadanov1967]). It is done in three different ways. One of them

uses the ’minimal norm property’. The second one uses the idea of connection between a

reproducing kernel and an orthogonal projector — it is a generalization of Skwarczyński’s

results (see [Skwarczyński1985a], [Skwarczyński1985b]). The third method is a new idea

which uses orthogonal projectors and weak convergence.

We also give sufficient conditions for Ramadanov Theorem for a decreasing sequence

of domains to be true.

Bearing in mind the minimal norm property of a reproducing kernel, we conclude that

in the set of square-integrable solutions of elliptic equations which have value equal to

some c in a given point, if not empty, there is exactly one element with minimal L2-

norm. Moreover this element depends in continuous way on a weight of integration and

a domain of integration in a precisely defined sense. It looks like this theorem was not

known before; note that usually name ’minimal solution of a differential equation’ is used

to denote different kinds of extremal solutions.

Particular case of our space is the Hilbert space of square-integrable harmonic func-

tions. Much is known about the reproducing kernel of such a space, including direct

formula when the domain is the unit ball (see e.g. [Ramey1996], [Axler2001], [Kang2001],
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[Koo2005]). For that case we generalize Z. Pasternak-Winiarski’s results on admissible

weights (see [Pasternak1992]). We show which conditions a weight of integration must

satisfy for the reproducing kernel of a corresponding weighted space to exist, in particu-

lar we show that if an inverse of a weight is integrable in some positive power, then the

reproducing kernel exists. We also give an example of a weight for which a reproducing

kernel of such a space does not exist. Moreover we show an upper estimate for a minimal

solution of Laplace’s equation in the sense described above.

The next part of the dissertation is devoted to the case of the Szegö kernel. Such a

reproducing kernel plays an important role in mathematics. For example, it is known

that for simply connected domains in C1 there is a direct connection between Poisson

kernel and Szegö kernel (see e.g. [Stein1972] and the last section of the dissertation).

Moreover the unique function from Riemann Mapping Theorem may be given using the

Szegö kernel (see [Bell2015]).

In what follows we will consider weighted Szegö kernels. Properties of such a gener-

alization of classical Szegö kernel were investigated in few papers (see e.g. [Nehari1952],

[Alenitsin1972], [Uehara1984], [Uehara1995]; the second paper is in russian). In all of

them, however, only continuous weights were in the consideration. Therefore it is natural

to prove some Theorems which state how Szegö kernel depends on a weight of integra-

tion in the case when weights do not have to satisfy this assumption. Before doing that,

we need to answer the question which weights are ’good enough’ to take, i.e. for which

weights there exists a reproducing kernel of corresponding weighted Szegö space. The case

of Szegö space is more subtle than the case of classical and harmonic Bergman spaces, as

we will see in this section.

We find sufficient conditions for a weight in order for the Szegö kernel of the corre-

sponding weighted Szegö space to exist. We show that if an inverse of a weight is inte-

grable, then the Szegö kernel exists. A case of weights for domains with non-connected

boundaries is also considered. We give an example of a weight on the unit ball, for which

the Szegö kernel of the corresponding Szegö space does not exist. Moreover using biholo-
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morphisms we show that such weights exist for a large class of domains. Bell-Ligocka

Theorem on existence of a smooth prolongation of a biholomorphism to the boundary

(see [Bell1980]) is used in this proof. This section is mainly based on [Żynda2020].

Then we show that the Szegö kernel depends in continuous way on a weight of inte-

gration, i.e. on a deformation of an inner product. Pasternak’s Theorem on a dependence

of orthogonal projection on a deformation of an inner product (see [Pasternak1998]) is

used in the proof.

We also show how a weighted Szegö kernel can be used to prove elementary theorems

of complex analysis. This part is based on [Żynda2019b].
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Chapter 1

Elements of the theory of reproducing

kernels

The aim of this chapter is to recall basic concepts of the theory of reproducing kernel

Hilbert spaces which will be used later.

1.1 Reproducing kernel Hilbert space

Definition 1.1. Let H be a Hilbert space of complex-valued functions defined on the same

domain U with an inner product 〈·|·〉 with complex conjugate on the first variable and let

|| · || be a norm induced by that inner product. The function K : U × U → C, if it exists,

such that for any z ∈ U and for any f ∈ H we have:

(i) K(z, ·) ∈ H;

(ii) (reproducing property) 〈K(z, ·)|f〉 = f(z);

will be called a reproducing kernel of a Hilbert space H.

Note that of course each real-valued function is in fact complex-valued function.

It is easy to see that in particular Hilbert spaces RN and CN with inner products de-
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fined in the classical way:

〈x|y〉 :=
N∑
i=1

xiyi

for x = (x1, . . . , xN), y = (y1, . . . , yN) can be treated as Hilbert spaces of functions.

Indeed, we can treat these spaces as spaces of functions defined on {1, 2, . . . , N} with

values in R and C, respectively. Such a Hilbert space is equipped with the reproducing

kernel

K(z, w) = χz(w),

where χz(w) is equal to 1 when w = z and 0 otherwise.

We can also consider the space l2(C, µ) of complex sequences (x1, x2, . . . ), square-summable

in the sense:

||x||µ :=
+∞∑
i=1

|xi|2µi < ∞

for some µ = (µ1, µ2, . . . ), such that µi > 0 for any i ∈ N. Such a space with an inner

product:

〈xi|yi〉µ =
+∞∑
i=1

xiyiµi

is a Hilbert space equipped with the reproducing kernel:

K(z, w) =
1

µz

χz(w),

where χz was defined in the example above. (See [Żynda2019a] for more details.)

Although the cases of Cn and l2(C, µ) are easy to investigate, general formulas for any re-

producing kernel are not known. Therefore it is important to prove theorems which show

how reproducing kernels depend on different parameters, which we do in this dissertation

for Malyshev and Szegö kernels.

It is well-known that for any reproducing kernel K we have

K(z, z) ≥ 0.
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for z ∈ U . Indeed, by the reproducing property and the fact that the norm of any function

is non-negative we have:

K(z, z) = 〈K(z, ·)|K(z, ·)〉 = ||K(z, ·)||2 ≥ 0.

This fact will be used frequently in what follows without further reminding.

We can also prove something stronger:

Proposition 1.1. Let H be a reproducing kernel Hilbert space of functions defined on a

domain U , such that the function I equal to 1 everywhere is its element. Then for any

z ∈ U we have

K(z, z) ≥ 1

||I||2
.

Proof: By the reproducing property and Cauchy’s inequality:

1 = |〈K(z, ·)|I〉| ≤ ||K(z, ·)|| · ||I|| = ||I||
√

K(z, z).�

Proposition 1.2. For any reproducing kernel K it is true that

|K(z, w)| ≤
√

K(z, z)
√

K(w,w).

Proof: By the reproducing property and Cauchy’s inequality:

|K(z, w)| = |〈K(w, ·)|K(z, ·)〉| ≤ ||K(z, ·)|| · ||K(w, ·)||

Using the reproducing property again we get the thesis. �

Note that not each Hilbert space of functions is equipped with a reproducing kernel.

Examples of Hilbert spaces of functions without corresponding reproducing kernels can

be found in [Pasternak1992] or [Żynda2020]. We will show results of the second paper

later in this dissertation. We will also give an example of Malyshev space which is not a

reproducing kernel Hilbert space.
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Theorem 1.1. The following conditions are equivalent:

(i) there exists a reproducing kernel of H;

(ii) functionals of point evaluation

H 3 f 7→ f(z) ∈ C

are continuous for any z ∈ U , i.e. for any z ∈ U there exist Cz > 0, such that for any

f ∈ H

|f(z)| ≤ Cz||f ||. (1.1)

Proof: (i) ⇒ (ii) By the reproducing property and Cauchy-Schwarz inequality

|f(z)| = |〈K(z, ·)|f〉| ≤ ||K(z, ·)|| · ||f || =
√

K(z, z)||f ||.

(ii) ⇒ (i) If functionals of point evaluation are continuous, then by Riesz representation

theorem for each z ∈ U there exists ez ∈ H, such that

f(z) = 〈ez|f〉.

Function K defined in the following way

K(z, w) := ez(w)

is the reproducing kernel of the Hilbert space H. �

Another consequence of the Riesz representation theorem is the fact that if the repro-

ducing kernel of a Hilbert space exists, then it is unique.

It is well-known that each two Hilbert spaces with complete orthonormal systems of

the same cardinality are isometrically isomorphic. However, it is possible that in one

of them functionals of point evaluation are continuous, while in another — not, i.e. it

is possible that out of two isometrically isomorphic Hilbert spaces one is a reproducing

kernel Hilbert space, while the other one — is not.
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Note that each finite-dimensional Hilbert space is a reproducing kernel Hilbert space.

Indeed, since any linear operator between two finite-dimensional Banach spaces is contin-

uous, so in particular it applies to any functional of point evaluation.

Proposition 1.3.
√

K(z, z) is the smallest constant Cz, for which inequality (1.1) holds.

Proof: Let Ez : H 3 f 7→ f(z) ∈ C be the functional of point evaluation. By the

Riesz correspondence theorem,

||Ez||∗ = ||K(z, ·)||,

but

||K(z, ·)|| =
√

K(z, z).

At once ||Ez||∗ is by definition the smallest constant for which inequality (1.1) holds. �

As we will see in what follows, the case of kernel of Szegö type is more subtle and we will

need to change general theory introduced above a bit to suit it to that special case.

1.2 Minimal norm property

In this whole section we assume that H is a Hilbert space of functions defined on U and

K is its reproducing kernel.

Theorem 1.2. The following conditons are equivalent for a point z ∈ U :

(i) f(z) = 0 for any f ∈ H;

(ii) K(z, z) = 0;

(iii) K(z, ·) ≡ 0.

Proof: (i) ⇒ (ii) If for some z ∈ U we have f(z) = 0 for any f ∈ H, then in particular

for g(·) = K(z, ·) we have g(z) = 0.

(ii) ⇒ (iii) Because

〈K(z, ·)|K(z, ·)〉 = K(z, z) = 0

9



and the only element of any Hilbert space with a norm equal to zero is zero, we have

K(z, ·) ≡ 0 on U .

(iii)⇒ (i) By the reproducing property, for any f ∈ H we have

f(z) = 〈K(z, ·)|f〉 = 0.�

Theorem 1.3. Let K be a reproducing kernel of H. If K(z, z) 6= 0, then

kz(·) :=
K(z, ·)
K(z, z)

is the only element of H with the following properties:

(i) kz(z) = 1;

(ii) if mz ∈ H, mz(z) = 1 and ||mz|| ≤ ||kz||, then mz = kz. Moreover

||kz|| =
1√

K(z, z)
.

Proof: By Theorem 1.2 there exists f ∈ H, such that f(z) 6= 0. By inequality (1.1)

and Proposition 1.3 we have for such a function f

1√
K(z, z)

≤ ||f ||
|f(z)|

=

∣∣∣∣∣∣∣∣ f

f(z)

∣∣∣∣∣∣∣∣ . (1.2)

But ∣∣∣∣∣
∣∣∣∣∣K(z, ·)
K(z, z)

∣∣∣∣∣
∣∣∣∣∣
2

=
1

K(z, z)

by the reproducing property. To end the proof we need only to show that, if ||mz|| = ||kz||,

then mz = kz. Note that for fz := 1
2
(mz + kz) we have fz(z) = 1 and

||fz|| =

∣∣∣∣∣∣∣∣12(mz + kz)

∣∣∣∣∣∣∣∣ ≤ 1

2
(||mz|| + ||kz||) = ||kz||.

On the other hand we showed above that

||fz|| ≥ ||kz||,

(see (1.2)), so ||fz|| = ||kz||. Since in our case the triangle inequality is in fact an equality

and each Hilbert space is strictly convex, there exists α ∈ C, such that mz = αkz. Thus

||fz|| =

∣∣∣∣∣∣∣∣12(mz + kz)

∣∣∣∣∣∣∣∣ =
1

2
(α + 1)||kz||.
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Since

||fz|| = ||kz||,

we see that α = 1 and in conclusion mz = kz. �

11





Chapter 2

Kernels of Malyshev type

V. A. Malyshev considered (see [Malyshev1997]) continuous embeddings of square-integrable

functions from a kernel of hypoelliptic operator into the space of continuous functions. In

this dissertation we will also consider Hilbert spaces connected with the kernel of elliptic

operator, but our space and reproducing kernel will be a different idea.

Recalling minimal norm property of reproducing kernels from chapter 1.2., we find out

that reproducing kernel of such a type is a powerful tool which allows us to solve extremal

problems for solutions of elliptic equations.

In whole this chapter by ’derivative’ we understand ’weak derivative’ i.e. in the sense

of distribution theory and all solutions are understood in the strong sense.

2.1 Elements of Partial Differential Equations Theory

The aim of this section is to recall some classical results of Partial Differential Equations

Theory, which will be used later.

Definition 2.1. Name multiindex of length n ∈ N will be used to denote any element

α = (α1, α2, . . . , αn) ∈ {0, 1, 2, . . . }n. Its absolute value will be an expression

|α| := α1 + · · · + αn.

13



Let α be a multiindex of length n. For convenience we will use the following notation:

f (α) :=
∂|α|f

∂xα1
1 . . . ∂xαn

n

.

Definition 2.2. If for a given function f : Rn ⊃ U → R we have

Df = −
n∑

i,j=1

(aij(x)(fxi
))xj

+
n∑

i=1

bi(x)fxi
+ c(x)f,

and aij ∈ C1(U), bi, c ∈ L∞(U), then we will say that D is a differential operator of

order 2 in its divergence form.

Definition 2.3. If there exists a constant Θ > 0, such that
n∑

i,j=1

aij(x)vivj ≥ Θ|v|2,

for any x ∈ U and any v ∈ Rn in the definition above, then we will say that D is an

elliptic operator.

Often such a name is used to denote uniformly elliptic operator. See e.g. [Evans1998]

for more details.

Ellipticity means that matrix
a11(x) a12(x) . . . a1n(x)

a21(x) a22(x) . . . a2n(x)

. . . . . . . . . . . .

an1(x) an2(x) . . . ann(x)


is positively defined for any x ∈ U . Note that ellipticity depends only on coefficients of

second-order partial derivatives.

Example: The Laplace’s operator in R2

4 := −
(

∂2

∂x2
1

+
∂2

∂x2
2

)
is a classical example of an elliptic operator. Indeed, inequality from the definition of an

elliptic operator is satisfied for Θ = 1 and in fact becomes equality.
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Definition 2.4. Let k ∈ N, 1 ≤ p ≤ ∞ and U be a domain in Rn. The Sobolev space

W k,p(U) is defined as the set of all functions f defined on U , such that for every multi-

index α with |α| ≤ k, the mixed partial derivative f (α) exists in the weak sense and is an

element of Lp(U).

Proposition 2.1. W k,p(U) with a norm

[[f ]]k,pU :=


(∑

|α|6k

∥∥f (α)
∥∥p

Lp(Ω)

) 1
p

1 6 p < ∞;

max|α|6k

∥∥f (α)
∥∥
L∞(Ω)

p = ∞

is a Banach space.

We omit the proof.

Definition 2.5. Let U ⊂ Rn be a domain. The Hölder’s space Ck,γ(U) for k ∈ N,

γ ∈ (0, 1], is defined as a set of functions f from Ck(U) for which Hölder’s norm

]]f [[k,γU :=
∑
|α|≤k

sup
x∈U

|f (α)| +
∑
|α|=k

sup
x,y∈U ;x ̸=y

{
|f (α)(x) − f (α)(y)|

|x− y|γ

}

is finite.

Proposition 2.2. The Hölder’s space Ck,γ(U) is a Banach space.

As in the case of Sobolev spaces, we omit the proof. For more extensive treatment of

the subject see e.g. [Adams2003].

Theorem 2.1. Let U ⊂ Rn be a domain with the boundary of class C1. Let f be an

element of the Sobolev space W k,p(U). If k > n
p
, then f is also an element of the Hölder’s

space

Ck−[n/p]−1,γ(U),

where

γ =


[
n

p

]
+ 1 − n

p
, n

p
6∈ Z;

any positive number less than 1, n
p
∈ Z.
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Moreover there exists a constant C1 > 0, such that

]]f [[
k−[np ]−1,γ

U ≤ C1[[f ]]k,pU .

For more details, see [Evans1998], Theorem 6 in Section 5.6.3.

Theorem 2.2. Let U be a domain in Rn with a boundary of class C1. Let D be an elliptic

operator such that (in divergence form)

Du = −
n∑

i,j=1

(aij(uxi
))xj

+
n∑

i=1

bi(x)uxi
,+c(x)u

where aij ∈ C1(U), bi, c ∈ L∞(U). Let f ∈ L2(U) and u ∈ W 1,2(U) be a weak solution of

elliptic equation

Du = f

in U . Then u ∈ W 2,2(V ) for any compact set V ⊂ U and there exists constant C2 > 0,

such that

[[u]]k,pV ≤ C2 (||f ||U + ||u||U) .

For more details, see [Evans1998], Theorem 1 in Section 6.3.1.

Moreover

Theorem 2.3. Let aij, bi, c ∈ C∞(U) and f ∈ C∞(U). Let u ∈ W 1,2(U) be a weak

solution of elliptic equation

Du = f

in U . Then u ∈ C∞(U), which means that it is in fact strong solution.

For more details see [Evans1998], Theorem 3 in Section 6.3.

2.2 Space and kernel of Malyshev type

Let U be a domain in RN . Let L2(U) denote the space of classes of measurable functions

defined on U such that

||f ||2U :=

∫
U

|f(w)|2dw < ∞.
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Such a space with an inner product

〈f |g〉U :=

∫
U

f(w)g(w)dw

is a Hilbert space.

(If U does not change in our considerations or is unspecified, we will simplify our

notation to || · || and 〈−, ·〉.)

Let now D be a linear differential operator defined on L2(U). By L2D(U) we under-

stand

{f ∈ L2(U) : Df = 0},

where the equality is understood in the strong sense.

Note that if coefficients of operator D are of class C∞, then by Theorem 2.3 weak

solution of the equation Df = 0 is in fact strong solution, which means that we can

identify elements of L2D(U) with their continuous representants, so in particular value of

these functions in any point z ∈ U will be well defined.

Proposition 2.3. Let fn be a sequence of functions such that Dfn = 0 for any n conver-

gent to function f in L2(U) topology. Then Df = 0. Moreover if coefficients of operator

D are of class C∞, then the space L2D(U) is a closed subspace of L2(U).

Proof: Let fn ∈ L2D(U) and suppose that fn → f in the L2(U) topology. Let h be

an element of some dense subspace of L2(U) contained in the domain of D∗. Then

0 = 〈h|Dfn〉 = 〈D∗h|fn〉,

and

0 = 〈D∗h|f〉 = 〈h|Df〉,

which implies

0 = 〈h|Df〉.
17



Since h was chosen arbitrarily from a dense subspace of L2(U), Df = 0. Moreover if D

has smooth coefficients, then f is also the strong solution and L2D(U) is closed in L2(U).

�

So we know that if only D has coefficients of C∞ class, then L2D(U) is a Hilbert space.

Such a Hilbert space is a generalization of the well-known Bergman space. Indeed, for

example for U ⊂ R2 and

D =
∂

∂z
=

1

2

(
∂

∂x1

+ i
∂

∂x2

)
L2D(U) is a space of holomorphic and square-integrable functions on U .

Theorem 2.4. Let U be a domain in R2 with the boundary of class C1. Let D be an

elliptic operator, such that (in divergence form)

Df = −
2∑

i,j=1

(aij(fxi
))xj

+
2∑

i=1

bi(x)fxi
+ c(x)f,

where aij ∈ C1(U), bi, c ∈ L∞(U). Then there exists a reproducing kernel of L2D(U).

If coefficients of operator D are not of class C∞, then it is possible that the space of

square integrable solutions in the strong sense of the equation Df = 0 is not closed. In

such a case we can take the closure and define the reproducing kernel on it, using standard

techniques (see [Szafraniec2004]).

From now on KU will be used to denote the reproducing kernel of L2D(U), especially

when the domain U changes in our considerations. Moreover in the remainder of this

dissertation, if we say “elliptic operator”, we will mean that U ⊂ R2 is a domain with

C1-boundary and coefficients in its divergence form that satisfy the hypotheses of the

theorem above. We will also write “elliptic equation Df = 0” in the same manner.

Proof of the Theorem: Let f ∈ L2D(U). Since we consider strong solutions only,

f is also an element of W 2,2(V ) for any compact set V ⊂ U . Let w ∈ intV . Let r be

sufficiently small for the ball B(w, r) = {z ∈ R2 : |w − z| < r} to lie in V . Then, for any
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z ∈ B(w, r) by Theorem 2.1, we have

|f(z)| ≤ CB(w,r)[[f ]]2,2B(w,r),

where CB(w,r) does not depend on f ∈ L2D(U).

By Theorem 2.2,

[[f ]]2,2B(w,r) ≤ C2||f ||V .

Of course

||f ||V ≤ ||f ||U .

So we have shown that for any compact set X ⊂ U there exists CX , such that for any

function f ∈ L2D(U) and for any w ∈ X

|f(z)| ≤ CX ||f ||U . (2.1)

This means that functionals of point evaluation, i.e., functionals

Ez : L2D(U) 3 f 7→ f(z) ∈ C

are continuous. Using Theorem 1.1 completes the proof. �

As we said in chapter 1.1., not every Hilbert space of functions is a reproducing ker-

nel Hilbert space. So let us give an example of a Malyshev space which is not equipped

with a reproducing kernel.

Example: Let U be the unit circle in R2 and

D =
∂2

∂x∂y
.

(Clearly D is not an elliptic operator. To find out that we just need to take e.g. a vector

v = (1,−1) to see that the inequality from the definition of an elliptic operator is not

satisfied.) It is easy to see that Df = 0 in the strong sense if and only if

f(x, y) = c(x) + d(y)
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for some C2-functions c, d. In particular

hn(x, y) := exp(−x2n) + exp(−y2n) ∈ L2D(U)

for any n ∈ N. We have∫ 1

−1

exp(−x2n)dx = ox
√
n = to =

1√
n

∫ √
n

−
√
n

exp(−t2)dt

<
1√
n

∫ ∞

−∞
exp(−t2)dt → 0.

Similarly ∫ 1

−1

exp(−2x2n)dx → 0.

Let

S = {z = (x, y) ∈ R2 : −1 < x < 1, −1 < y < 1}.

Then ∫
U

| exp(−x2n) + exp(−y2n)|2dxdy

=

∫
U

(exp(−2x2n) + exp(−2y2n) + 2 exp(−x2n) exp(−y2n))dxdy

<

∫
S

(exp(−2x2n) + exp(−2y2n) + 2 exp(−x2n) exp(−y2n))dxdy

=

∫ 1

−1

dy

∫ 1

−1

exp(−2x2n)dx +

∫ 1

−1

dx

∫ 1

−1

exp(−2y2n)dy

+

∫ 1

−1

exp(−x2n)dx

∫ 1

−1

exp(−y2n)dy

= 2

∫ 1

−1

exp(−2x2n)dx + 2

∫ 1

−1

exp(−2y2n)dy + 2
(∫ 1

−1

exp(−x2n)dx
)2

= 4

∫ 1

−1

exp(−x2n)dx + 2
(∫ 1

−1

exp(−x2n)dx
)2

→ 0.

We showed that ||hn||U → 0. On the other hand hn(0, 0) = 2 for any n ∈ N. It means

that the functional of point evaluation for z = (0, 0) is not continuous and therefore in-

equality (1.1) is not true for that point. By Theorem 1.1, L2D(U) is not equipped with

a reproducing kernel. �
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Note that the author of [Malyshev1997] considered different kind of space and repro-

ducing kernel connected with the kernel of an elliptic operator. He claimed that the space

of square-integrable functions which are elements of the kernel of hypoelliptic operator

can be continuously embedded in the space of continuous functions. It is easy to see that

such an embedding cannot be natural, i.e. we do not identify an element of L2D(U) with

is continuous representant.

2.3 Weighted kernel of Malyshev type

Now let us consider a measurable and almost everywhere positive function µ : U → R.

Such a function will be called a weight. By L2(U, µ) we will mean a Hilbert space of

(classes of) functions, for which

||f ||2µ :=

∫
U

|f(w)|2µ(w)dw < ∞

with weighted inner product

〈f |g〉µ :=

∫
U

f(w)g(w)µ(w)dw.

Let D be a differential operator defined on L2(U, µ). Now we may define L2D(U, µ)

as a space of these elements from L2(U, µ) which have continuous representant with the

same inner product for which Df = 0 in the strong sense.

First let us recall that if D does not have smooth coefficients, then L2D(U) may not

be closed. If L2D(U) is not closed, we can take the closure of it. We will use the same

symbol for the closure, which should not be misleading. In what follows, we will assume

that L2D(U) is already closed.

It is easy to see that if there exist constants C1, C2, such that 0 < C1 < µ < C2, then

L2D(U, µ) is equal as a set with L2D(U) and weighted inner product generates the same

topology as classical one. Indeed, to show that we just need to write simple inequality

C1

∫
U

|f(w)|2dw ≤
∫
U

|f(w)|2µ(w)dw ≤ C2

∫
U

|f(w)|2dw.
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Consequently, L2D(U, µ) for µ bounded from above and below by non-zero constants is

closed, i.e. is a Hilbert space.

If a weight is not bounded from below or from above by non-zero constant, then the

topology of L2D(U, µ) may be different than the topology of L2D(U) and the spaces may

be different as sets. Nevertheless,

Proposition 2.4. Let coefficients of operator D be of class C∞. Suppose that for any

compact set X ⊂ U there exists CX , such that for any f ∈ L2D(U, µ) and any z ∈ X we

have

|f(z)| ≤ CX ||f ||µ. (2.2)

Then the space L2D(U, µ) is a closed subspace of L2(U, µ).

We will need the following lemma:

Lemma 2.1. Let D be an elliptic operator. (Here we do not assume that its coefficients

are of class C∞.) Let {fn} be a sequence of functions, such that Dfn = 0 for any n which

converges locally uniformly on U to some function f . Then Df = 0 and for any compact

set X ⊂ U f ∈ L2D(X).

Proof of the Lemma: Since fn → f locally uniformly,∫
X

|fn(w) − f(w)|2dw ≤ L(X) sup
w∈X

|fn(w) − f(w)|2 → 0,

where X is any compact subset of U and L(X) is Lebesgue measure of X. By Proposition

2.3 Df = 0. Using the fact that a compact set X ⊂ U can be chosen arbitrarily and the

fact that D is a local operator ends the proof. �

Roughly speaking, this lemma states that locally uniform limit of weak solutions of an

elliptic equation is a weak solution of the same elliptic equation. If coefficients of D are

smooth, then in fact this proves that locally uniform limit of strong solutions of elliptic
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equation is also a strong solution of the same equation.

Proof of the Proposition: Let {fn} ⊂ L2D(U, µ) and suppose that fn → f in the

L2(U, µ) topology. By (2.2) fn converges to f locally uniformly. Using Lemma 2.1 and

Proposition 2.3 completes the proof. �

From now on, D will mean such an operator for which the reproducing kernel of L2D(U)

exists, e.g. an elliptic operator. Moreover by Kµ we will denote reproducing kernel of

L2D(U, µ) without further reminding.

Definition 2.6. Let µ be a weight on U . We will say that it is admissible for D, if

for any compact set X ⊂ U there exists CX , such that for any f ∈ L2D(U, µ) and any

z ∈ CX we have

|f(z)| ≤ CX ||f ||µ.

Note that by Theorem 1.1 this condition implies the existence of a reproducing kernel

and if coefficients of D are of class C∞ by the Proposition 2.4 this condition implies that

L2D(U, µ) is closed in L2(U, µ).

If L2D(U, µ) is not closed in L2(U, µ), we can take the closure and use the same symbol

to denote it. As in the case of L2D(U), it should not be misleading.

Proposition 2.5. Let µ > C > 0 a.e. Then µ is admissible.

Proof: By (2.1) for any compact set X ⊂ U there exists CX > 0, such that for any

f ∈ L2D(U, µ) ⊂ L2D(U) we have

|f(z)|2 ≤ CX

∫
U

|f(w)|2dw.

Of course ∫
U

|f(w)|2dw =
1

C

∫
U

|f(w)|2Cdw ≤ 1

C

∫
U

|f(w)|2µ(w)dw.�

Theorem 2.5. Let µ1, µ2 be weights on U , such that µ1 is admissible and µ2 ≥ µ1 a.e.

Then µ2 is also admissible.
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Proof: If µ1 is admissible, then for any compact set X ⊂ U there exists CX , such

that for any z ∈ X and any f ∈ L2D(U, µ1)

|f(z)| ≤ CX ||f ||µ1 .

Since ∫
U

|f(w)|2µ1(w)dw ≤
∫
U

|f(w)|2µ2(w)dw,

we have that L2D(U, µ2) ⊂ L2D(U, µ1) and that for any f ∈ L2D(U, µ2)

|f(z)| ≤ CX ||f ||µ2 .�

In particular, if µ is an admissible weight, then also eµ and µµ are admissible weights,

because ex > x and xx > x almost everywhere on the interval [0,+∞[.

Corollary 2.1. Let µ1, µ2 be weights on U and let µ1 be admissible. Then µ1 +µ2 is also

an admissible weight. In particular sum of admissible weights on the same domain is an

admissible weight.

Theorem 2.6. Let µ1, µ2 be admissible weights on U , such that µ2 ≥ C > 0 a.e. Then

µ1 · µ2 is an admissible weight.

Proof: If µ1 is admissible, then for any compact set X ⊂ U there exists CX , such

that for any z ∈ X and any f ∈ L2D(U, µ1)

|f(z)| ≤ CX ||f ||µ1 .

Since ∫
U

|f(w)|2µ1(w)dw =
1

C

∫
U

|f(w)|2µ1(w)Cdw ≤ 1

C

∫
U

|f(w)|2µ1(w)µ2(w)dw,

we have that L2D(U, µ1µ2) ⊂ L2D(U, µ1) and for any f ∈ L2D(U, µ1µ2)

|f(z)| ≤ CX
1√
C
||f ||µ1µ2 .�

Corollary 2.2. Let µ be an admissible weight on U and let α > 0. Then αµ is also an

admissible weight.
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In particular cases we can give direct formula for a weighted kernel of Malyshev type

by means of a classical one:

Proposition 2.6. Let µ ≡ c > 0 be a weight on U . Then

Kµ(z, w) =
1

c
K1(z, w),

where K1 is the reproducing kernel of L2D(U) = L2D(U, 1).

Proof: Since K1(z, ·) ∈ L2D(U), then it is also true that 1
c
K1(z, ·) ∈ L2D(U). Of

course 〈
c−1K1(z, ·)|f

〉
c

=
〈
K1(z, ·)|f

〉
= f(z),

so the considered function Kµ has the reproducing property. �

It is well-known that in the case of weighted Bergman kernels more general formula

occurs. In that case of square-integrable and holomorphic functions, if only weight is a

square of modulus of some function f , which is holomorphic and non-zero on U , then

K|f |2(z, w) =
1

f(z)

1

f(w)
K1(z, w).

One would suppose that for Malyshev kernels we have something similiar — just with the

change of hypothesis ’a weight is a square of modulus of some holomorphic function’ with

’a weight is a square of some function from L2D(U)’. This, however, is not true, because

product of two solutions of given differential equation does not have to be a solution of

the same equation, while product of two holomorphic functions is a holomorphic function.

2.4 Particular case: Hilbert space of harmonic functions

As we saw in the previous section, if only weight µ is bounded from below by positive

constant, then there exists reproducing kernel of L2D(Ω, µ). In particular case, when D is

Laplace’s operator, we can tell much more. So until the end of section ’Particular case...’

D will mean the Laplace’s operator.
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Note that when D is the Laplace’s operator a lot is known (see e.g. [Axler2001], [Kang2001],

[Ramey1996], [Koo2005]). Kernel of L2D(Ω, 1) for Ω being the unit ball in Rn is equal to:

K(z, w) =
1

nV (B)(1 − 2〈z|w〉 + |z|2|w|2)n
2

(
n(1 − |z|2|w|2)2

1 − 2〈z|w〉 + |z|2|w|2
− 4|z|2|w|2

)
,

where V (B) is volume of n-dimensional unit ball.

Note that volume of n-dimensional ball of radius r is equal to

π
n
2 rn

Γ(n
2

+ 1)
. (2.3)

It is a classical result. See e.g. [Gipple2014] for more details.

By L2D(U, µ) we will mean the Hilbert space of harmonic functions f defined on U ,

which are square-integrable in the sense∫
U

|f(w)|2µ(w)dw < ∞,

with the inner product

〈f |g〉µ :=

∫
U

|f(w)|2µ(w)dw.

2.4.1 Sufficient condition for a weight to be admissible

As in the case of classical Bergman space of holomorphic functions (see [Pasternak1992]),

the following sufficient condition for existence of reproducing kernel of L2D(Ω, µ) holds:

Theorem 2.7. Let µ be a weight on Ω, such that there exists a > 0, for which∫
Ω

1

µa
< ∞.

Then µ is admissible weight for the Laplace’s operator.
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Proof: Let z ∈ Ω be fixed. Let r > 0 be sufficiently small for a ball B(z, r) := {w ∈

RN ||w − z| < r} to lie in Ω. Let p := 1+a
a

and q := 1 + a. Let now f ∈ L2D(Ω, µ). Then

by Mean Value Theorem for subharmonic functions we have

|f(z)|
2
p ≤

Γ(n
2

+ 1)

π
n
2 rn

∫
B(z,r)

|f(w)|
2
p dw.

(See (2.3).)

Of course ∫
B(z,r)

|f(w)|
2
p dw =

∫
B(z,r)

|f(w)|
2
pµ(w)

1
pµ(w)−

1
p dw.

Since p, q > 1 and 1
p

+ 1
q

= 1, we may use Hölder’s inequality:∫
B(z,r)

|f(w)|
2
pµ(w)

1
pµ(w)−

1
p dw ≤

(∫
B(z,r)

|f(w)|2µ(w)dw

) 1
p
(∫

B(z,r)

µ(w)−
q
p dw

) 1
q

.

So we have

|f(z)| ≤
(∫

B(z,r)

µ(w)−
q
p dw

) p
2q
(

π
n
2 rn

Γ(n
2

+ 1)

)− p
2

||f ||µ.

Finally

|f(z)| ≤
(∫

B(z,r)

µ(w)−adw

) 1
2a
(

π
n
2 rn

Γ(n
2

+ 1)

)− 1+a
2a

||f ||µ. (2.4)

Note that if z ∈ B(z0, r) ⊂ B(z0, 2r) ⊂ Ω, then B(z, r) ⊂ B(z0, 2r) and in fact we have

|f(z)| ≤
(∫

B(z0,2r)

µ(w)−adw

) 1
2a
(

π
n
2 rn

Γ(n
2

+ 1)

)− 1+a
2a

||f ||µ

for any z ∈ B(z0, r), so the weight is admissible. �

2.4.2 An example of a weight which is not admissible

An example of weight for which there is no reproducing kernel of corresponding weighted

Bergman space was found by Z. Pasternak-Winiarski (see [Pasternak1992]). Here we will

use similiar idea to give example of non-admissible weight for L2D(Ω, µ). We will need

the following theorem by Runge (see [Rudin1974] for more details):

Theorem 2.8. Let X ⊂ C be a compact set, such that C\X is connected. Let f : X → C

be continuous on X and holomorphic on interior of X. Then f is a uniform limit of a

sequence of holomorphic polynomials on X.
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Let Ω be unit disk in R2. Let

An := {(x, y) ∈ R2 : ||(x, y)|| < 2−n} ∪ {(x, y) ∈ R2 : |y| < 2−n ∧ 0 < x < 1},

where

|| · ||

is classical norm on R2. Let

Mn := (Ω \ An) ∪ An+1.

Now let fn : Mn → R2 be defined in the following way

fn(x, y) :=

 1 + 1
n

for (x, y) ∈ An+1

0 for (x, y) ∈ Ω \ (An ∪Bn),
.

where Bn = {(x, y) ∈ R2 : x2 + y2 = 1 ∧ |y| < 2−n}. By Theorem 2.8 there exist

holomorphic polynomials Gn, such that

|Gn(x, y) − fn(x, y)| < 1

n

for any (x, y) ∈ Mn. Bearing in mind that a sequence of holomorphic functions is conver-

gent if and only if its real and imaginary part are convergent and imaginary part of fn is

zero, we conclude that in fact there exist harmonic polynomials gn, such that

|gn(x, y) − fn(x, y)| < 1

n

for any (x, y) ∈ Mn. It implies that |gn(x, y)| < 1
n

for (x, y) ∈ Ω \An and 1 < |gn(x, y)| <

1 + 2
n

for (x, y) ∈ An+1. Now let us define polynomials:

hn(x, y) :=
gn(x, y)

gn(0, 0)
.

Since |gn(0, 0)| > 1, hn is well-defined. Moreover(
1 +

2

n

)−1

< |hn(x, y)| < 1 +
2

n

on An+1 and

|hn(x, y)| < 1

n
28



on Ω \ An. Now let us denote

Dn := Ω ∩ An.

Then we may define a weight:

µn(x, y) :=


1 if (x, y) ∈ Ω \D1

0 if x = 1

min
{

1, 1
|hn(x,y)|2

}
if (x, y) ∈ Dn \Dn+1.

Since µ is bounded from above (by 1), hn ∈ L2D(Ω, µ) for any n ∈ N, as harmonic

polynomials. It is easy to show that

|hn(x, y)|2µ(x, y) < 9

and

lim
n→∞

|hn(x, y)|2µ(x, y) = 0.

Therefore, by Lebesgue Majorized Convergence Theorem we have∫
Ω

lim
n→∞

|hn(x, y)|2µ(x, y)dw = lim
n→∞

∫
Ω

|hn(x, y)|2µ(x, y)dw = 0.

By its own definition, |hn(0, 0)| = 1 for any n ∈ N, but ||hn||µ → 0. It means that

functional of point evaluation L2D(Ω, µ) 3 f 7→ f(0, 0) ∈ R is not continuous and by

Theorem 1.1 reproducing kernel of L2D(Ω, µ) does not exist.

2.5 Dependence of Malyshev kernel on a weight of inte-

gration

Dependence of two canonical kernels (of Bergman type and of Szegö type) on weight

of integration was widely investigated. Z. Nehari (see [Nehari1952]) considered the case

of continuous weights. Z. Pasternak-Winiarski (see [Pasternak1990]) showed that the

Bergman kernel depends in analytic way on a weight of integration, without hypothesis
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that weights need to be continuous. He, however, assumed that weights converge in pretty

strong topology.

In this dissertation it will be proved that kernels of Malyshev type depend ’only’ in

continuous way on a weight of integration. We will do this, however, with very weak

assumptions — weights will just need to be measurable functions and they will need to

converge to a limit weight only almost everywhere.

Now we assume again that D is an elliptic operator.

Theorem 2.9. Let {µn} be a sequence of weights on U convergent almost everywhere to

µ, such that there exist C1, C2 > 0, for which C1 < µ < C2 and C1 < µn < C2 a.e. for

each n ∈ N. Then

lim
n→∞

Kµn ,

where the limit above is locally uniform on U × U , exists and is equal to Kµ.

By K(z, w) we will mean pointwise limit of Kµn(z, w).

Lemma 2.2. Let {µn} be a sequence of weights on U convergent almost everywhere to µ,

such that µ > c > 0 a.e. Let locally uniform limit of Kµn exist on U . Then for any z ∈ U

the following conditions are equivalent:

(i) Kµn(z, z) → Kµ(z, z) for almost every z ∈ U ;

(ii) Kµn(z, ·) → Kµ(z, ·) locally uniformly on U × U .

Proof: We need only to show implication (i) ⇒ (ii).

By Lemma 2.1, locally uniform limit K is an element of kernel of operator D. By

Fatou’s Lemma and our assumptions:∫
U

|K(z, w)|2µ(w)dw ≤ lim inf
n→∞

∫
U

|Kµn(z, w)|2µn(w)dw

= lim inf
n→∞

Kµn(z, z) = Kµ(z, z).

We showed that K(z, ·) ∈ L2D(U, µ). Moreover∣∣∣∣∣∣K(z, ·)
∣∣∣∣∣∣

µ
≤

√
Kµ(z, z)
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and if only Kµ(z, z) > 0, ∣∣∣∣∣
∣∣∣∣∣ K(z, ·)
Kµ(z, z)

∣∣∣∣∣
∣∣∣∣∣
µ

≤ 1√
Kµ(z, z)

,

so by Theorem 1.3,

K(z, w)

Kµ(z, z)
=

Kµ(z, w)

Kµ(z, z)
,

which means that K(z, w) = Kµ(z, w).

If Kµ(z, z) = 0, then by Theorem 1.2, we have also K(z, ·) ≡ 0 and Kµ(z, ·) ≡ 0, so

K(z, ·) = Kµ(z, ·). �

Lemma 2.3. Let µ1, µ2 be weights on U , such that 0 < c < µ1 ≤ µ2 a.e. Then for any

z ∈ U we have

Kµ2(z, z) ≤ Kµ1(z, z).

Proof: First let us assume that Kµ1(z, z) and Kµ2(z, z) are greater than 0. By

Theorem 1.3 it is true that

1

Kµ1(z, z)
=

∫
U

∣∣∣∣Kµ1(z, w)

Kµ1(z, z)

∣∣∣∣2 µ1(w)dw ≤
∫
U

∣∣∣∣Kµ2(z, w)

Kµ2(z, z)

∣∣∣∣2 µ1(w)dw.

Since µ1 ≤ µ2, ∫
U

∣∣∣∣Kµ2(z, w)

Kµ2(z, z)

∣∣∣∣2 µ1(w)dw ≤
∫
U

∣∣∣∣Kµ2(z, w)

Kµ2(z, z)

∣∣∣∣2 µ2(w)dw.

Because ∫
U

∣∣∣∣Kµ2(z, w)

Kµ2(z, z)

∣∣∣∣2 µ2(w)dw =
1

Kµ2(z, z)
,

in conclusion we have that

1

Kµ1(z, z)
≤ 1

Kµ2(z, z)
,

which ends the proof.

Now let Kµ1(z, z) = 0. Then by Theorem 1.2 we have Kµ1(z, ·) ≡ 0. Since µ1 ≤ µ2,

we have Kµ2(z, ·) ∈ L2D(U, µ1). Then by Theorem 1.2 again we have Kµ2(z, ·) ≡ 0, so

Kµ2(z, z) ≤ Kµ1(z, z).
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If Kµ2(z, z) = 0, then of course Kµ2(z, z) ≤ Kµ1(z, z). �

Proof of the Main Theorem: Let X ⊂ U be any compact set. We have∫
X

|Kµn(z, w)|2dw ≤
∫
U

|Kµn(z, w)|2dw.

Moreover

1

C1

∫
U

|Kµn(z, w)|2C1dw ≤ 1

C1

∫
U

|Kµn(z, w)|2µn(w)dw =
1

C1

Kµn(z, z).

By Lemma 2.3,

Kµn(z, z) ≤ KC1
2

(z, z),

where KC1
2

denotes the reproducing kernel of L2D(U, C1

2
). It means that sequence {Kµn(z, ·)}

is bounded in L2D(U). By Theorem 2.2 we claim that {Kµn(z, ·)} is bounded also in the

Sobolev space W 2,2(X). Now, by Theorem 2.1, we see that {Kµn(z, ·)} is also bounded in

the Hölder’s space C0,γ(X) for any γ > 0. This means that the hypotheses of the Arzelá-

Ascoli Theorem are satisfied and in our sequence {Kµn(z, ·)} there exists a subsequence

which is locally uniformly convergent to some function K. Without losing generality we

may identify such a convergent subsequence with whole sequence.

We need only to show that K is the reproducing kernel of L2D(U, µ). We will divide

our prove into two cases.

case 1: Let Kµ(z, z) = 0. Then by Theorem 1.2 also Kµ(z, ·) ≡ 0. In addition, since

L2D(U, µ) is equal as a set with L2D(U, 1), we have K(z, ·) ∈ L2D(U, 1) and again by

Theorem 1.2 K(z, ·) ≡ 0. So we showed that Kµ(z, ·) = K(z, ·).

case 2: Let Kµ(z, z) > 0. Since all µn and µ are uniformly bounded from below and

above by non-zero constants, all spaces L2D(U, µn) and L2D(U, µ) are pairwise equal as

sets. By Proposition 1.3 for any f ∈ L2D(U, µn)

|f(z)| ≤
√
Kµn(z, z)||f ||µn .

Taking limit we get

|f(z)| ≤
√

K(z, z)||f ||µ,
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where Lebesgue’s Dominated Convergence Theorem can be used to show that ||f ||µn →

||f ||µ. For f(·) := Kµ(z, ·), we obtain

Kµ(z, z) ≤
√

K(z, z)
√

Kµ(z, z)

and in consequence

Kµ(z, z) ≤ K(z, z).

So also K(z, z) > 0.

By Fatou’s Lemma and our assumptions:∫
U

|K(z, w)|2µ(w)dw ≤ lim inf
n→∞

∫
U

|Kµn(z, w)|2µn(w)dw =

lim inf
n→∞

Kµn(z, z) = K(z, z).

Therefore by Lemma 2.1 K(z, ·) ∈ L2D(U, µ) and∣∣∣∣∣
∣∣∣∣∣K(z, ·)
K(z, z)

∣∣∣∣∣
∣∣∣∣∣
µ

≤ 1√
K(z, z)

.

By Theorem 1.3, K(z, z) ≤ Kµ(z, z).

So we showed that Kµ(z, z) = K(z, z). By Lemma 2.2 Kµn converges locally uniformly

to Kµ. �

2.6 Ramadanov Theorem for Malyshev Kernels

A version of continuous dependence of general reproducing kernels on increasing or de-

creasing sequences of domains can be found in a seventy-year-old paper of N. Aron-

szajn (see [Aronszajn1950]). In 1967, I. Ramadanov published his famous research ([Ra-

madanov1967]) in which he considered the continuous dependence of the classical Bergman

kernel on an increasing sequence of domains. His results were obtained later in a different

way by M. Skwarczyński ([Skwarczyński1985a], [Skwarczyński1́985b]). As we will see in

this dissertation, Skwarczyński’s and Ramadanov’s techniques can be slightly changed to
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prove continuous dependence of the kernel defined by V. M. Malyshev on an increasing se-

quence of domains. Moreover in the section ’One more proof of the Ramadanov Theorem’

we will give a new proof of the Ramadanov Theorem, using weak convergence.

In whole this section we will assume without further reminding that differential oper-

ator D is well-defined on a sum of all considered domains.

2.6.1 Case of an Increasing Sequence of Domains

The aim of this section is to prove the following:

Theorem 2.10. Let D be an elliptic operator. Let {Un} be an increasing sequence of

domains and U =
⋃+∞

n=1 Un. Then

lim
n→∞

KUn(z, w)

exists and is equal to KU(z, w), where the limit above is locally uniform on U × U .

In the remainder of this section, K(z, w) will mean the pointwise limit of KUn(z, w).

Before giving the proof of the Main Theorem, we will prove some lemmas.

Lemma 2.4. With hypotheses as in the Theorem above, we have

KUn+1(z, z) ≤ KUn(z, z)

for any z ∈ Un. Moreover,

KU(z, z) ≤ KUn(z, z)

for any n ∈ N, which in the limit becomes

KU(z, z) ≤ K(z, z).

Proof: First let us assume that KUn(z, z) > 0 and KUn+1(z, z) > 0. By the reproduc-

ing property and Theorem 1.3

1

KUn(z, z)
=

∫
Un

∣∣∣∣∣KUn(z, w)

KUn(z, z)

∣∣∣∣∣
2

dw ≤
∫
Un

∣∣∣∣∣KUn+1(z, w)

KUn+1(z, z)

∣∣∣∣∣
2

dw.
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By properties of the integral and again by the reproducing property,∫
Un

∣∣∣∣∣KUn+1(z, w)

KUn+1(z, z)

∣∣∣∣∣
2

dw ≤
∫
Un+1

∣∣∣∣∣KUn+1(z, w)

KUn+1(z, z)

∣∣∣∣∣
2

dw =
1

KUn+1(z, z)
.

In order to prove the second part of the Lemma for the case of KU(z, z) > 0 and

KUn(z, z) > 0 for any n ∈ N, we just need to swap KUn+1(z, z) with KU(z, z) in the

considerations above.

Now let us assume that KUn(z, z) = 0 for some n ∈ N. Then, for m > n, also

KUm(z, z) = 0 and KU(z, z) = 0. Indeed, if KUn(z, z) = 0 then by Theorem 1.2 for any

f ∈ L2D(Un) we have f(z) = 0. But if g ∈ L2D(V ) for V ⊃ Un, then g also is an

element of L2D(Un), so for any g ∈ L2D(V ) we have g(z) = 0. By Theorem 1.2 again

KUm(z, z) = 0 and KU(z, z) = 0.

If KU(z, z) = 0, then of course KU(z, z) ≤ KUn(z, z) for any n ∈ N and KU(z, z) ≤

K(z, z). �

Lemma 2.5. Let U1, U2, . . . be a sequence of domains and U be a limit domain in the

sense of pointwise limit of the sequence of indicator functions of sets U1, U2, . . . . Let f be

an arbitrary positive-valued function defined and integrable on
⋃+∞

n=1 Un. Then

lim
n→∞

∫
Un

f(w)dw =

∫
U

f(w)dw.

Proof: Let χX be the indicator function of set X. Then of course f(w)χUn(w) ≤ f(w)

and, by the Lebesgue Dominated Convergence Theorem,

lim
n→∞

∫
Un

f(w)dw = lim
n→∞

∫
U

f(w)χUn(w)dw

=

∫
U

lim
n→∞

f(w)χUn(w)dw =

∫
U

f(w)dw.�

Lemma 2.6. Let U1, U2, . . . , be a sequence of domains convergent to a domain U in the

sense of pointwise convergence of the sequence of indicator functions of sets Un, which

satisfies the following condition:

(A) For each compact set X ⊂ U there exists m such that for n > m, X ⊂ Un.

Let locally uniform limit of KUn exist on U . Then the following conditions are equivalent.
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(i) KUn(z, z) → KU(z, z) for almost every z ∈ U ;

(ii) KUn → KU locally uniformly on U × U .

Note that, if {Un} is an increasing sequence of domains or if U ⊂ Un for large enough

n, then condition (A) is satisfied. Moreover, it is easy to see that in the case of an in-

creasing or decreasing sequence of domains
⋃+∞

n=1 Un and
⋂+∞

n=1 Un, are equivalent to the

limits introduced in the Lemma.

Proof of the Lemma: We need only prove the implication (i) ⇒ (ii).

Let X ⊂ U be compact. Then there exists m ∈ N, such that, for any n > m, X ⊂ Un.

By Fatou’s lemma:∫
X

|K(z, w)|2dw ≤ lim inf
n→∞

∫
X

|KUn(z, w)|2dw ≤ lim inf
n→∞

∫
Un

|KUn(z, w)|2dw

= lim inf
n→∞

KUn(z, z) = KU(z, z).

In conclusion ||K(z, ·)||U ≤
√
KU(z, z) and if only KU(z, z) > 0, we have∣∣∣∣∣
∣∣∣∣∣ K(z, ·)
KU(z, z)

∣∣∣∣∣
∣∣∣∣∣
U

≤ 1√
KU(z, z)

.

By Lemma 2.1, K(z, ·) ∈ L2D(U). By Theorem 1.3

K(z, ·) = KU(z, ·),

which ends the proof.

On the other hand, if KU(z, z) = 0, then by Theorem 1.2 also KU(z, ·) ≡ 0 and

K(z, ·) ≡ 0, so KU(z, ·) = K(z, ·). �

Proof of the Main Theorem: Let X ⊂ U be any compact set, m,n ∈ N be such

that X ⊂ Un for any n ≥ m. We have

||KUn(z, ·)||2X ≤ ||KUn(z, ·)||2U = KUn(z, z).
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By Lemma 2.4,

0 ≤ KUn+1(z, z) ≤ KUn(z, z)

which means that the sequence {KUn(z, ·)} is bounded in L2D(U). By Theorem 2.2 we

claim that {KUn(z, ·)} is bounded also in the Sobolev space W 2,2(X). Now, by Theorem

2.1, we see that {KUn(z, ·)} is also bounded in the Hölder’s space C0,γ(X) for any γ > 0.

This means that the hypotheses of the Arzelá-Ascoli theorem are satisfied and in our

sequence {KUn(z, ·)} there exists a subsequence which is locally uniformly convergent to

some function K. We need only show that the limit of such a convergent subsequence is

the reproducing kernel of the indicated space. Without loss of generality, we may identify

such a convergent subsequence with the whole sequence.

Note that limn→∞KUn(z, z) must exist, because the sequence {KUn(z, z)} is bounded

and monotonic.

By condition (A), there exists m such that X ⊂ Un for n > m. Then, by Fatou’s

Lemma and our assumptions,∫
X

|K(z, w)|2dw ≤ lim inf
n→∞

∫
X

|KUn(z, w)|2dw ≤ lim inf
n→∞

∫
Un

|KUn(z, w)|2dw.

But

lim inf
n→∞

∫
Un

|KUn(z, w)|2dw = lim inf
n→∞

KUn(z, z) = K(z, z). (2.5)

By Lemma 2.1 and the arbitrariness of the choice of compact set X we have K(z, ·) ∈

L2D(U). Now we need to show that K(z, ·) = KU(z, ·). We will consider two cases.

Case 1: First, let KU(z, z) = 0 for some z ∈ U . Then, by Theorem 1.2, also

K(z, z) = 0, as the value of K(z, ·) at the point z. By (2.5), K(z, ·) ≡ 0 on U , since

|K(z, ·)|2 is continuous and non-negative. Using again Theorem 1.2, we conclude that

K(z, ·) = KU(z, ·).

Case 2: Now let KU(z, z) > 0. Then, by Lemma 2.4, we also have K(z, z) > 0.

Moreover, by (2.5),

||K(z, ·)||U ≤
√

K(z, z)
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and ∣∣∣∣∣
∣∣∣∣∣K(z, ·)
K(z, z)

∣∣∣∣∣
∣∣∣∣∣
U

≤ 1√
K(z, z)

.

By Theorem 1.3, K(z, z) ≤ KU(z, z).

Of course L2D(U) ⊂ L2D(Un+1) ⊂ L2D(Un) for any n ∈ N. Therefore by 1.3, for

f ∈ L2D(U), we can write inequality (1.1) in the following form

|f(z)| ≤
√

KUn(z, z)

√∫
Un

|f(w)|2dw . (2.6)

Taking the limit in (2.6) and using Lemma 2.5 we get

|f(z)| ≤
√

K(z, z)

√∫
U

|f(w)|2dw.

In particular, for f(·) := KU(z, ·) ∈ L2D(U) we have

|KU(z, z)| ≤
√
K(z, z)

√∫
U

|KU(z, w)|2dw =
√

K(z, z)
√

KU(z, z),

so KU(z, z) ≤ K(z, z).

Finally, KU(z, z) = K(z, z) and using Lemma 2.6 ends the proof. �

2.6.2 Case of a Decreasing Sequence of Domains

First, we will define D(U) as a set of these functions f from L2D(U), for which there

exists a domain V ⊃ U , such that f ∈ L2D(V ).

Theorem 2.11. Let D be an elliptic operator. Let {Un} be a decreasing sequence of

domains and U =
⋂+∞

n=1 Un be a bounded domain. If D(U) is dense in L2D(U), then

lim
n→∞

KUn(z, w)

exists and is equal to KU(z, w), where the limit above is locally uniform on U × U .

As in the preceding section, we will denote the pointwise limit of KUn(z, w) by K(z, w).
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Proof: Let z ∈ U and f ∈ L2D(U). Let h ∈ D(U). Then, for n large enough, we

have h ∈ L2D(Un). By inequality (1.1) and Proposition 1.3,

|h(z)| ≤
√

KUn(z, z)

√∫
Un

|h(w)|2dw . (2.7)

Taking the limit in (2.7) and using Lemma 2.5 we get

|h(z)| ≤
√

K(z, z)

√∫
U

|h(w)|2dw.

We know that K(z, z) exists because, in a fashion similar to Lemma 2.4, it can be shown

that

KU(z, z) ≥ KUn+1(z, z) ≥ KUn(z, z).

(One notable difference here is that if KUn(z, z) = 0 for some n, then also KUm(z, z) = 0

for m < n. Also if KU(z, z) = 0, then for each n ∈ N we have KUn(z, z) = 0.)

In conclusion,

KU(z, z) ≥ K(z, z),

i.e. KUn(z, z) is increasing and bounded from above.

On the other hand, by our assumptions there exists a sequence {hn} ⊂ D(U), such

that hn → f in the L2(U) sense. So we can write

|f(z)| ≤
√
K(z, z)

√∫
U

|f(w)|2dw =
√
K(z, z)

√∫
U

|f(w)|2dw.

Taking f(·) = KU(z, ·) we get

KU(z, z) ≤
√

K(z, z)
√

KU(z, z)

and if KU(z, z) > 0, then

KU(z, z) ≤ K(z, z).

If KU(z, z) = 0, then also K(z, z) = 0. In conclusion KU(z, z) = K(z, z).

Now let X ⊂ U be any compact set. We have

||KUn(z, w)||2X ≤ ||KUn||2U ≤ KUn(z, z) ≤ KU(z, z),
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so the sequence {KUn(z, ·)} is bounded in L2D(U). By Theorem 2.2 we claim that

{KUn(z, ·)} is bounded also in the Sobolev space W 2,2(X). Now by Theorem 2.1 we

see that {KUn(z, ·)} is also bounded in the Hölder’s space C0,γ(X) for any γ > 0. This

means that the hypotheses of the Arzelá-Ascoli Theorem are satisfied and in our sequence

{KUn(z, ·)} there exists a subsequence which is locally uniformly convergent to some func-

tion K. Using Lemma 2.6 ends the proof. �

2.6.3 The Ramadanov Theorem and Orthogonal Projections

The main aim of this section is to prove the following theorem:

Theorem 2.12. Let D be an elliptic operator. Let U =
⋃+∞

n=1 Un, U1 b U2 b U3 b . . . .

Then

lim
n→∞

KUn(z, ·) = KU(z, ·),

for any z ∈ U .

Note that this theorem is stronger than Theorem 2.10, because convergence here is

convergence in norm and by (1.1) and Proposition 1.3 it implies locally uniform conver-

gence. (Remember that we may extend KUn(z, ·) to U by zero.)

In order to prove this theorem we will need Stone’s Theorem and the following Lemma:

Theorem 2.13. (Stone) Let F1 c F2 c F3 . . . be a sequence of closed subspaces of the

Hilbert space H and F =
⋂∞

n=0 Fn. Let Pi : H → Fi, P : H → F be orthogonal projections.

Then, for any f ∈ H, we have

Pnf → Pf.

See [Stone1990] for more details and the proof.

Lemma 2.7. Let U =
⋃+∞

n=1 Un, U1 b U2 b U3 b . . . . Let Fn := {f ∈ L2(U) : f
∣∣
Un

∈

L2D(Un)}. Let Pn be orthonormal projection onto Fn. Then

Pf = lim
n→∞

Pnf,
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where f ∈ L2(U).

Proof: By definition, Fn is a closed subspace of L2(U) for any natural number n.

Moreover, f ∈ Fn+1 implies that f ∈ Fn. Indeed,∫
Un

|f(w)|2dw ≤
∫
Un+1

|f(w)|2dw < ∞ (2.8)

and since Df = 0 on Un+1, then also Df = 0 on Un. So we know that F1 c F2 c F3 c

·. . . Of course L2D(U) =
⋂+∞

n=1 Fn, because of the fact that Df = 0 on U is equivalent

to Df = 0 on each Un and because of inequality (2.8). Using Stone’s Theorem ends the

proof. �

Proof of the Main Theorem: Let P : L2(U) → L2D(U) be the orthogonal projec-

tion. Then, for any h ∈ L2(U), we have

h = h1 + h2 ∈ L2D(U) ⊕ L2D(U)⊥.

Of course ∫
U

h(w)KU(z, w)dw =

∫
U

h1(w)KU(z, w)dw = h1(z).

Thus we can write

(Ph)(z) =

∫
U

h(w)KU(z, w)dw.

Now let X ⊂ U be a domain and z ∈ X. Let hz be defined in the following way:

hz(w) :=

 KX(z, w) for w ∈ X

0 for w ∈ U \X
.

Of course such an hz is an element of L2(U).

For any f ∈ L2D(U) we have

〈f |Phz〉 = 〈Pf |hz〉 = 〈f |hz〉 =

∫
X

f(w)KX(z, w)dw = f(z).

Since the only element in L2D(U) with the reproducing property is its reproducing kernel,

we have

KU(z, ·) = Phz, z ∈ U.
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Similiarly, if X ⊂ Un, we have

KUn(z, ·) = Phz, z ∈ U

Using the Lemma we obtain that

lim
n→∞

Pnhz = Phz,

which completes the proof. �

2.6.4 One More Proof of the Ramadanov Theorem

Theorem 2.12 can be proved in an another way. Let f ∈ L2(U). Then∫
U

χUn(w)KUn(z, w)f(w)dw = [Pnf ](z),

where χX is the indicator function of set X and Pn is the orthogonal projection of L2(U)

onto L2D(Un) as in the proof from the previous Section. By Stone’s Theorem [Pnf ](z) →

[Pf ](z), where P is the orthogonal projection of L2(U) onto L2D(U). So we have∫
U

χUn(w)KUn(z, w)f(w)dw →
∫
U

χU(w)KU(z, w)f(w)dw.

Since f was chosen arbitrarily from L2(U), we conclude that χUnKUn(z, ·) converges

weakly to χUKU(z, ·). Now we need only show that

lim
n→∞

∫
U

χUn|KUn(z, w)|2dw ≤
∫
U

χU |KU(z, w)|2dw

to prove that in fact χUnKUn(z, ·) converges to χUKU(z, ·) in the strong topology of L2,

i.e. we need to show that

lim
n→∞

KUn(z, z) ≤ KU(z, z).

This can be done in the same way as in the Proof of the Main Theorem from Section

2.6.1. �
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2.7 Applications to Partial Differential Equations Theory

In fact, by using reproducing kernels theory, we solved some extremal problems for solu-

tions of elliptic equations.

Theorem 2.14. Let U ⊂ R2, z ∈ U , c ∈ R and weight µ be bounded from below by

non-zero constant. In the set V µ
z,c := {f ∈ L2(U, µ) : Df = 0 ∧ f(z) = c} of weighted

square-integrable solutions of the elliptic equation Df = 0, for which f(z) = c, if it is not

empty, there exists exactly one element f0, such that

||f0||µ = min
f∈V µ

z,c

||f ||µ.

Such an element in what follows will be called a minimal (z, c)-solution in weight

µ of the elliptic equation Df = 0 on U . If µ ≡ 1 we will just write Vz,c instead of V µ
z,c

and say ’minimal (z, c)-solution of elliptic equation’ instead of ’minimal (z, c)-solution of

elliptic equation in weight 1’.

Of course if µ is integrable on U and c(x) ≡ 0 in the divergence form of an elliptic

equation, then each constant function is an element of L2D(U, µ) and therefore Vz,c is not

empty. In particular, it is true for weight µ ≡ 1 and a bounded domain U .

Theorem 2.15. Let µn be a sequence of weights convergent to µ a.e. on U , z ∈ U and

c ∈ R. Let fn denotes minimal (z, c)-solution in weight µn of the elliptic equation Du = 0.

Let f be minimal (z, c)-solution in weight µ of the elliptic equation Du = 0. Then

lim
n→∞

fn = f,

where the limit above is locally uniform on U × U .

Theorem 2.16. Let Un be an increasing sequence of bounded domains, U =
⋃+∞

n=1 Un,

z ∈ U , c ∈ R. Let f z
n be a minimal (z, c)-solution of the elliptic equation Du = 0 on Un

and let f z be a minimal (z, c)-solution of the elliptic equation Du = 0 on U . Then

f z
n → f z
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in the topology L2(U).

Proof of the Theorems: For c = 1 it is just a consequence of Theorems 1.3, 2.9 and

2.12.

Now let c 6= 0, c 6= 1. Then the linear operator

Af := cf

is a bijection between V µ
z,1 and V µ

z,c, and

||Af ||µ = |c| · ||f ||µ.

Therefore in V µ
z,c there is exactly one element fc with minimal weighted L2-norm and

fc = cf1,

where f1 is the unique element of V µ
z,1 with minimal weighted L2-norm.

Now let us consider the case c = 0. Of course zero is the only element of V µ
z,0 with

minimal norm for any domain and zero is locally the uniform limit of the sequence of zero

functions. �

2.7.1 Estimates for a minimal solution of the Laplace’s equation

Theorem 2.17. Let Ω be a domain in Rn with a boundary of class C1. Let µ be a weight

on Ω, such that ∫
Ω

1

µ(w)
dw < ∞

and ∫
Ω

µ(w)dw < ∞.

Let for any z ∈ U and c ∈ R f denote minimal (z, c)-solution in weight µ of the Laplace’s

equation in Rn. Then

|f(w)| ≤ c

√∫
Ω

µ(w)dw

√∫
Ω

1

µ(w)
dw

Γ(n
2

+ 1)

π
n
2 δ(w)n

,
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where δ(w) denotes the distance of w to the boundary of Ω. In particular, if µ is equal to

1 almost everywhere, then

|f(w)| ≤ cL(Ω)
Γ(n

2
+ 1)

π
n
2 δ(w)n

,

where L(Ω) denotes Lebesgue measure of Ω.

Proof: First let us consider situation when c = 1. By Theorem 1.3

|f(w)| =

∣∣∣∣K(z, w)

K(z, z)

∣∣∣∣ .
By Proposition 1.2

|f(w)| ≤
√
K(w,w)√
K(z, z)

.

By Proposition 1.3 and (2.4)

√
K(w,w) ≤

√∫
B(z,r)

1

µ(w)
dw

Γ(n
2

+ 1)

π
n
2 δ(w)n

.

By Proposition 1.1

1√
K(z, z)

≤

√∫
Ω

µ(w)dw.

If c 6= 1, c 6= 0, then a minimal (z, c)-solution in weight µ is equal to minimal (z, 1)-

solution in weight µ multiplied by c, as in the proof of theorems from the previous section.

If c = 0, then inequality from the theorem is trivial. �
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Chapter 3

Kernels of Szegö type

Kernels of Szegö type were introduced in [Szegö1921]. Their properties were widely ex-

amined, but not as wide the properties of the Bergman kernel.

Weighted Szegö kernel was investigated in few papers (see e.g. [Nehari1952], [Alen-

itsin1972], [Uehara1984], [Uehara1995]); the second one is in russian). In all of them,

however, only continuous weights were in the consideration and we will not need this

assumption in the dissertation.

As it was said in Chapter 1, case of the Szegö kernel is more subtle, so we will need

to change general theory introduced there a bit to suit it to this case.

3.1 Poisson Kernel

Before we proceed, we need to recall the concept of a Poisson kernel, which will be used

later. This section is mainly based on [Stein1972].

Definition 3.1. Let Ω be a bounded domain with a boundary of class C2 in Rn. Function

G defined on Ω × Ω \ {(x, y) ∈ Ω × Ω|x = y}, such that

(i) G is of class C2−ε;

(ii) 4yG(x, y) = 0 for x 6= y;
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(iii) G(x, y) − Cn|x− y|−n+2 is harmonic in y ∈ Ω for each fixed x ∈ Ω;

(iv) G(x, y)|y∈∂Ω ≡ 0;

is a Green’s function of a domain Ω.

It can be proved that a function which satisfies all of these conditions is unique.

Definition 3.2. Let Ω be a bounded domain with a boundary of class C2. Function

P : Ω × ∂Ω → R, such that

P (x, y) := −∂G(x, y)

∂vy

for vy being an outward unit vector normal to ∂Ω at y, is a Poisson kernel of domain

Ω.

Theorem 3.1. Let f : Ω → R be harmonic on Ω and continuous on Ω. Then for any

x ∈ Ω

f(x) =

∫
∂Ω

f(y)P (x, y)dS,

where dS denotes integral of a scalar field on y.

We omit the proof.

Proposition 3.1. A Poisson kernel for a ball in Rn with center x and radius r is given

by

P (z, w) =
r2 − |z − x|2

rCr|z − w|2
,

where Cr is the surface area of the unit (n-1)-sphere.

We omit the proof.

3.2 Lax-Milgram Theorem

Here we recall classical results which will be used to prove that Szegö kernel depends in

continuous way on a weight of integration.
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In the whole section H will be an arbitrary Hilbert space over R or C with an inner

product 〈−, ·〉 and a norm || · ||.

Theorem 3.2. Let B : H×H → C be a sesquilinear form. The following conditions are

equivalent:

(i) B is continuous;

(ii) B is separately continuous on each variable;

(iii) there exists C > 0 such that

|B(x, y)| ≤ C||x|| · ||y||

for any x, y ∈ H.

(iv) there exists A ∈ B(H), such that

B(x, y) = 〈x|Ay〉

for any x, y ∈ H.

We omit the proof.

Definition 3.3. We will say that a sesquilinear form B : H × H → C is coercive, if

there exists α > 0, such that

B(x, x) ≥ α||x||2 (3.1)

for any x ∈ H.

Theorem 3.3. (Lax-Milgram) Let H be a Hilbert space over R or C. Let B : H×H → C

be a sesquilinear form which is continuous and coercive on H. Then for any f ∈ H there

exists a unique element gf ∈ H, such that

B(h, gf ) = 〈h, f〉

for all h ∈ H. For such gf we have

||gf || ≤
1

α
||f ||,

where α > 0 is the smallest constant for which inequality (3.1) holds for any h ∈ H.
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We omit the proof.

Originally this result was published in [Lax1954]. Now we know that more general theo-

rems are true (see e.g. [Babuška1971]), but we will not need them in the considerations.

3.3 Weighted Szegö space and weighted Szegö kernel

For µ : ∂Ω → R measurable and almost everywhere greater than 0 (which we will call a

weight) by L2(∂Ω, µ) we will denote a set of classes of functions f : ∂Ω → C, square-

integrable in the sense

||f ||2µ :=

∫
∂Ω

|f(w)|2µ(w)dS < ∞,

where the integral is understood as an integral of a scalar field with a surface measure.

The set L2(∂Ω, µ) with an inner product given by

〈f |g〉µ :=

∫
∂Ω

f(w)g(w)µ(w)dS

is a Hilbert space. Now let us consider the space A(Ω) of continuous functions f : Ω → C,

such that f|Ω is holomorphic. Let us denote B(Ω, µ) := {f|∂Ω : f ∈ A(Ω)} ∩ L2(∂Ω, µ).

By L2H(∂Ω, µ) we will understand the closure of B(Ω, µ) in L2(∂Ω, µ) topology.

Of course L2H(∂Ω, µ) can change as a set with a change of µ. However,

Proposition 3.2. If µ1, µ2 are weights and there exist m,M > 0, such that

mµ1(z) ≤ µ2(z) ≤ Mµ1(z) (3.2)

a.e. on ∂Ω , then for any f ∈ L2(∂Ω, µj) we have f ∈ L2(∂Ω, µk), j, k ∈ {1, 2}, and

m||f ||2µ1
≤ ||f ||2µ2

≤ M ||f ||2µ1
. Hence L2H(∂Ω, µ1) = L2H(∂Ω, µ2) as a set and norms

||·||µ1 and ||·||µ2 are equivalent. In particular if 0 < m ≤ µ ≤ M < ∞, then L2H(∂Ω, µ) =

L2H(∂Ω, 1) as a vector space.
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Simple examples show that converse of these implications is not true.

If L2H(∂Ω, µ1) = L2H(∂Ω, µ2) as vector spaces, we will write µ1 ≈ µ2. It is easy to

show that it is an equivalence relation.

Each element of B(Ω, 1) has a unique holomorphic prolongation to Ω by Theorem 3.1

(see [Krantz2002] for more details), so it is also true for any element from B(Ω, µ), be-

cause B(Ω, µ) ⊂ B(Ω, 1) for any µ. We will denote the set of all such prolongations by

B̃(Ω, µ) (where B̃(Ω, µ) ⊂ A(Ω)).

A good question to ask is how to find a holomorphic prolongation of functions from

L2H(∂Ω, µ) \B(Ω, µ) for an arbitrary µ? We will answer this question in a moment.

We will use the same symbol for a function and its prolongation, which should not be

misleading.

Let µ be a weight with the following property:

(CB) for any compact set X ⊂ Ω there exists CX > 0, such that for any f ∈ B̃(Ω, µ)

and z ∈ X

|f(z)| ≤ CX ||f ||µ.

Then for functions from L2H(∂Ω, µ) \ B(Ω, µ) we can define their prolongation to Ω in

the following way:

Let (fn) be a sequence of functions from B̃(Ω, µ). Let f ∈ L2H(∂Ω, µ) be the limit of

this sequence. Since by (CB) the sequence of functions (fn|Ω) fullfils the Cauchy condition

locally uniformly on Ω, the function

f(z) := lim
n→∞

fn(z), z ∈ Ω

is well defined and holomorphic on Ω.

From now on, if µ fullfils (CB), we will interpret L2H(∂Ω, µ) as a set of functions on

Ω.

51



Definition 3.4. Let µ be a weight satisfying (CB). A function (if it exists) Sµ : Ω×Ω → C,

such that for any z ∈ Ω, Sµ(z, ·) ∈ L2H(∂Ω, µ) and for any f ∈ L2H(∂Ω, µ) (reproducing

property)

f(z) = 〈Sµ(z, ·)|f(·)〉µ,

will be called Szegö kernel of L2H(∂Ω, µ).

It is true (as for any reproducing kernel Hilbert space) that if Sµ and S ′
µ are Szegö

kernels of the same space, then Sµ = S ′
µ and if the Szegö kernel exists, then it is given

uniquelly by the formula

Sµ(z, w) =
∑
i∈I

φi(z)φi(w),

where {φi}i∈I is an arbitrary complete orthonormal system of L2H(∂Ω, µ). Hence for any

z, w ∈ Ω we have Sµ(w, z) = Sµ(z, w) and by Hartogs Theorem on separate analyticity the

function Ω × Ω′ 3 (z, w) 7→ S0(z, w) := Sµ(z, w) is holomorphic, where Ω′ = {w ∈ CN :

w ∈ Ω}. So Sµ is real analytic on Ω × Ω, holomorphic with respect to first N variables

and antiholomorphic with respect to last N variables. Moreover for any z ∈ Ω we have

||Sµ(z, ·)||2µ = ||Sµ(·, z)||2µ = Sµ(z, z). It is a natural question to ask, which conditions

must µ satisfy in order to L2H(∂Ω, µ) to be a reproducing kernel Hilbert space.

Definition 3.5. We will say that a weight µ is Szegö admissible (S-admissible for

short) if there exists Szegö kernel of L2H(∂Ω, µ) space.

Theorem 3.4. µ is an S-admissible weight if and only if the condition (CB) is satisfied.

Proof: ⇒ comes directly from the definition 3.4. We can use Theorem 1.1 and

Proposition 1.3 to show that in fact the smallest possible constant CX in condition (CB)

is

max
z∈X

√
Sµ(z, z).

⇐ (CB) means that functionals of evaluation i. e. functionals

Ẽz : B̃(Ω, µ) 3 f 7→ f(z) ∈ C
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are continuous. Since B(Ω, µ) is dense in L2H(∂Ω, µ) we can prolong Ẽz to the functional

Ez ∈ L2H(∂Ω, µ)∗ with the same majoring constant CX for any z ∈ Ω. By Riesz Rep-

resentation Theorem for Ez it means that for z ∈ Ω there exists ez ∈ L2H(∂Ω, µ), such

that for any f ∈ L2H(∂Ω, µ)

f(z) = 〈ez|f〉

and the function

Sµ(z, w) := ez(w), (z, w) ∈ Ω × Ω

is the Szegö kernel of L2H(∂Ω, µ). �

Definition 3.6. Classical Szegö space H2(Ω) can be also defined as a set of holomorphic

functions on Ω, for which

sup
ε>0

∫
∂Ωε

|f(w)|2dS < ∞,

where ∂Ωε = {z ∈ Ω : δ(z) = ε} and δ(z) denotes distance of z from ∂Ω.

Existence of non-tangential limit f(w) for almost every point w ∈ ∂Ω and any f ∈

H2(Ω) is a classical result of theory of Hardy spaces (see e.g. [Stein1972] or [Stein1993]).

For any f ∈ H2(Ω) ∫
∂Ω

|f(w)|2dS = sup
ε>0

∫
∂Ωε

|f(w)|2dS < ∞ (3.3)

(see [Krantz2002] or [Stein1972] for more details).

Of course for weight µ : ∂Ω → R, such that µ > c > 0 a.e. we have

L2H(∂Ω, µ) =

{
f ∈ H2(Ω) :

∫
∂Ω

|f(w)|2µ(w)dS < ∞
}
.

3.4 Admissible weights

The content of this section is based mainly on [Żynda2020].

53



3.4.1 Sufficient conditions for a weight to be S-admissible

Theorem 3.5. Let µ be a weight on ∂Ω, such that∫
∂Ω

1

µ
dS < ∞.

Then µ satisfies condition (CB).

Before we proceed, we will need the following Lemma:

Lemma 3.1. Let Ω1,Ω2 be bounded domains with C2-smooth boundaries, such that Ω1 ⊂

Ω2 and m ≥ 1. Then for any f ∈ L2H(∂Ω2) = L2H(∂Ω2, 1) we have∫
∂Ω1

|f(w)|mdS ≤ C

∫
∂Ω2

|f(w)|mdS, (3.4)

where

C =

(
2 max{P2(z0, w)|w ∈ ∂Ω2}
min{P1(z0, w)|w ∈ ∂Ω1}

) 1
m

and P1, P2 is the Poisson kernel of Ω1,Ω2, respectively and z0 is fixed point in Ω1. In

particular, C does not depend on f ∈ L2H(∂Ω2).

It is a particular case of a Lemma 2.1 from article [Chen2011], which was proven for

m > 1. It remains true, however, for m = 1, since authors of [Chen2011] follow the proof

of Theorem 1 from [Stein1972] and in case of m = 1 we just need to change f(y)dσ(y) to

a finite Borel measure on ∂Ω.

Proof of the Theorem: Let z0 ∈ Ω and let r be sufficiently small for K0 :=

K(z0, 2r) := {w ∈ CN : |z0−w| < 2r} to lie with its boundary in Ω. Then by Mean Value

Theorem for harmonic functions we have for f ∈ B̃(Ω, µ), z ∈ K(z0, r) and K := K(z, r)

|f(z)| = C1

∣∣∣∣∫
∂K

f(w)dS

∣∣∣∣ ≤ C1

∫
∂K

|f(w)|dS,

where 1
C1

is a measure of ∂K. By Lemma 2.4 we have∫
∂K

|f(w)|dS ≤ C0

∫
∂K0

|f(w)|dS ≤ C0C2

∫
∂Ω

|f(w)|dS,
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where by Lemma 3.1 we can fix C0 so it suits for any K(z, r), for z ∈ K(z0, r). By

Cauchy-Schwarz inequality,∫
∂Ω

|f(w)|dS =

∫
∂Ω

|f(w)|
√

µ(w)√
µ(w)

dS ≤

√∫
∂Ω

|f(w)|2µ(w)dS

√∫
∂Ω

1

µ(w)
dS.

Finally,

|f(z)| ≤ C0C1C2

√∫
∂Ω

1

µ(w)
dS

√∫
∂Ω

|f(w)|2µ(w)dS ≤ C0C1C2C3 ‖ f ‖µ≤ C ‖ f ‖µ,

where C does not depend on z ∈ K(z0, r). Hence µ satisfies (CB).

Corollary 3.1. If Ω is a bounded domain with a boundary of class C2, then a weight µ

defined on ∂Ω such that µ(z) ≥ c > 0 is an S-admissible weight.

Theorem 3.6. Let Ω be a bounded domain with the boundary of class C2. Let µ1, µ2 be

weights on ∂Ω, such that µ1 is S-admissible and µ2 ≥ µ1 a.e. Then µ2 is also S-admissible.

Proof: If µ1 is S-admissible, then for any compact set X ⊂ Ω there exists CX > 0,

such that for any z ∈ X and any f ∈ B̃(Ω, µ1)

|f(z)| ≤ CX ||f ||µ1 .

Since ∫
∂Ω

|f(w)|2µ1(w)dS ≤
∫
∂Ω

|f(w)|2µ2(w)dS,

we have that B̃(Ω, µ2) ⊂ B̃(Ω, µ1) and that for any f ∈ B̃(Ω, µ2)

|f(z)| ≤ CX ||f ||µ2 .�

In particular, if µ is an S-admissible weight, then also eµ and µµ are admissible weights,

because ex > x and xx > x almost everywhere on the interval [0,+∞[.

Corollary 3.2. Let Ω be a bounded domain with the boundary of class C2. Let Ψ1,Ψ2 be

weights on ∂Ω and let Ψ1 be S-admissible. Then Ψ1 + Ψ2 is also an S-admissible weight.

In particular sum of S-admissible weights on the same boundary is an S-admissible weight.
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Theorem 3.7. Let Ω be a bounded domain with the boundary of class C2. Let µ1, µ2 be

S-admissible weights, such that µ2 ≥ C > 0 a.e. Then µ1 · µ2 is an S-admissible weight.

Proof: If µ1 is S-admissible, then for any compact set X ⊂ Ω there exists CX > 0,

such that for any z ∈ X and any f ∈ B̃(Ω, µ1)

|f(z)| ≤ CX ||f ||µ1 .

Since∫
∂Ω

|f(w)|2µ1(w)dS =
1

C

∫
∂Ω

|f(w)|2µ1(w)CdS ≤ 1

C

∫
∂Ω

|f(w)|2µ1(w)µ2(w)dS,

we have that B̃(Ω, µ1µ2) ⊂ B̃(Ω, µ1) and for any f ∈ B̃(Ω, µ1µ2)

|f(z)| ≤ CX
1√
C
||f ||µ1µ2 .�

Corollary 3.3. Let µ be an S-admissible weight on the boundary ∂Ω of class C2 of a

bounded domain Ω and let α > 0. Then αµ is also an S-admissible weight.

3.4.2 Non-admissible weight for the unit circle in C1

Z. Pasternak-Winiarski in [Pasternak1992] found an example of a weight which is not

admissible for the case of the Bergman kernel. As we will see in a moment, a similiar

construction allows us to find a weight which is not S-admissible.

In this section we are going to use Theorem 2.8 again.

Let us define Ω := K(0, 1) = {z ∈ C : |z| < 1},

An := {z ∈ C : |z| < 2−n} ∪ {z ∈ C : |Imz| < 2−n ∧ 0 < Rez < 1}

and

Mn := (Ω \ An) ∪ An+1.
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Moreover let fn : Mn → C be defined in the following way

fn(w) :=

 1 + 1
n

for w ∈ An+1

0 for w ∈ Ω \ An

By Theorem 2.8 there exist polynomials gn : C → C, n ∈ N such that |fn(w)−gn(w)| < 1
n

for any w ∈ Mn. It implies that |gn(w)| < 1
n

for w ∈ Ω \ An and 1 < |gn(w)| < 1 + 2
n

for

w ∈ An+1. Now let us define polynomials

hn(w) :=
gn(w)

gn(0)
.

Since |gn(0)| > 1, hn is well defined,
(
1 + 2

n

)−1
< |hn(w)| < 1+ 2

n
on An+1 and |hn(w)| < 1

n

on Ω \ An. Now let us denote Dn := ∂Ω ∩ An. Then we may define a weight

µ(w) :=


1 for w ∈ ∂Ω \D1;

0 for w = 1;

min
{

1, 1
|hn(w)|2

}
for w ∈ Dn \Dn+1

(3.5)

Since µ is bounded from above (by 1), hn ∈ B̃(Ω, µ) for any n ∈ N. It is not hard to show

that for any w ∈ ∂Ω

|hn(w)|2µ(w) < 9.

and

lim
n→∞

|hn(w)|2µ(w) = 0.

Therefore, by Lebesgue Majorized Convergence Theorem, we have:

∫
∂Ω

lim
n→∞

|hn(w)|2µ(w)dS = lim
n→∞

∫
∂Ω

|hn(w)|2µ(w)dS = 0.

As we can see, |hn(0)| = 1 for any n, but ||hn||µ → 0, so the functional of point evaluation

Ẽ0 : B̃(Ω, µ) 3 f 7→ f(0) ∈ C is not continuous on B̃(Ω, µ) and therefore µ is not an

S-admissible weight.
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3.4.3 Non-admissible weight for the unit ball in CN

Let Ω := K(0, 1) = {w ∈ CN : |w| < 1} and U := {w ∈ CN : |w1| ≤ 1}. Let

An :=
(
{w ∈ CN : |w1| < 2−n} ∪ {w ∈ CN : |Imw1| < 2−n ∧ 0 < Rew1 < 1}

)
∩ Ω

and

Mn := (Ω \ An) ∪ An+1.

Now we may define pn(w1, w2, . . . , wN) := hn(w1) on Mn, where hn : V → C, V := {w ∈

CN : w2 = · · · = wN = 0}, has the same properties and is constructed in the same way as

in the previous section. Then we can define

Ψ(w1, w2, . . . , wN) :=


1 for w ∈ U \ A1;

0 for w1 ∈ [0, 1] ⊂ R;

min
{

1, 1
|pn(w)|2

}
for w ∈ An \ An+1.

µ := Ψ|∂Ω is non S-admissible weight on ∂Ω. Indeed, since µ is bounded from above (by

1), pn ∈ B̃(Ω, µ) for any n ∈ N by Hartogs’s Theorem on separate analytycity. Moreover

for w ∈ ∂Ω

|pn(w)|2µ(w) < 9.

and

lim
n→∞

|pn(w)|2µ(w) = 0.

Therefore, we can use Lebesgue Majorized Convergence Theorem as in the previous sec-

tion, to show that functional of evaluation Ẽ0 : B̃(Ω, µ) 3 f 7→ f(0) = f(0, 0, . . . , 0) ∈ C

is not continuous on B̃(Ω, µ). (Moreover all functionals of evaluation Ew for w =

(0, w2, . . . , wN) are not continuous.)

3.4.4 Weights and biholomorphisms

In this section we are going to use the following theorems:
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Theorem 3.8. Let Ω1,Ω2 be open domains in CN of one of the following types:

Type 1: smooth bounded pseudoconvex domain with the real analytic boundary;

Type 2: smooth bounded strictly pseudoconvex domain and (more generally);

Type 3: smooth bounded domain for which a ∂-operator exists and satisfies subelliptic

estimates.

Then any biholomorphic mapping between Ω1 and Ω2 extends smoothly to the boundary.

This theorem was proved by S. Bell and E. Ligocka in [Bell1980]. Note that each

(geometrically) convex domain is pseudoconvex and moreover in C1 each open domain is

pseudoconvex. (See [Hörmander1990] or [Krantz2002] for more details.)

In the following two theorems we are going to use the same symbol for biholomorphism

and its smooth prolongation to the boundary, if it exists, which should not be misleading.

Theorem 3.9. Let Ω1,Ω2 be domains of one of types 1-3 introduced above and Φ : Ω1 →

Ω2 be a biholomorphic mapping. Then for any integrable function f : ∂Ω2 → C we have∫
∂Ω2

fdS =

∫
∂Ω1

(f ◦ Φ)| det JCΦ|
2N
N+1 dS,

where JCΦ is the complex Jacobian matrix of Φ.

It is a simple generalization of theorem included in [Barret2014] as Proposition 1. for

particular f and for Ω1,Ω2 being strongly pseudoconvex domains with C∞ boundary. It

remains true in this version, since proof does not depend on integrated function and the

reason for restriction to only strongly pseudoconvex domains was the fact that in that

case biholomorphism has smooth prolongation to the boundary, which remains true in

this more general case.

Theorem 3.10. Let Ω1,Ω2 be of type 1, 2 or 3. Let Φ : Ω1 → Ω2 be a biholomorphism

and µ be a weight on ∂Ω2. Then

(i) for any g measurable and non-negative almost everywhere we have:∫
∂Ω2

gµdS < ∞ ⇔
∫
∂Ω1

(g ◦ Φ)(µ ◦ Φ)dS < ∞
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In particular, h ∈ L2H(∂Ω2, µ) if and only if h ◦ Φ ∈ L2H(∂Ω1, µ ◦ Φ).

(ii) µ is S-admissible on ∂Ω2 if and only if µ ◦ Φ is S-admissible on ∂Ω1.

Proof: (i) By the fact that u := | det JCΦ|
2N
N+1 is continuous function on compact set

Ω1, we have

C1

∫
∂Ω1

(g ◦ Φ)(µ ◦ Φ)dS ≤
∫
∂Ω1

(g ◦ Φ)(µ ◦ Φ)| det JCΦ|
2N
N+1 dS

≤ C2

∫
∂Ω1

(g ◦ Φ)(µ ◦ Φ)dS,

where C1 := minw∈Ω u(w) > 0 and C2 := maxw∈Ω u(w). By Theorem 3.9 we can change

integral in the middle to get:

C1

∫
∂Ω1

(g ◦ Φ)(µ ◦ Φ)dS ≤
∫
∂Ω2

gµdS ≤ C2

∫
∂Ω1

(g ◦ Φ)(µ ◦ Φ)dS, (3.6)

If the integral on the right hand side is finite, then integral in the middle must be also

finite and if integral in the middle is finite, then integral on the left hand side must be

also finite.

For the proof of the second part of (i) we just remind that a composition of two

holomorphic functions is also a holomorphic function.

(ii) Since Φ is biholomorphism, we need only to show implication in one direction.

If µ is S-admissible on ∂Ω2, then for any compact set X ⊂ Ω2, w ∈ X and any

f ∈ B̃(∂Ω2, µ) we have

|f(w)| ≤ CX

√∫
∂Ω2

|f |2µdS. (3.7)

By using (3.6) for inequality (3.7) we gain

|(f ◦ Φ)(w̃)| ≤ CX

√
C2

√∫
∂Ω1

|f ◦ Φ|2(µ ◦ Φ)dS,

for Ω1 ⊃ Y := Φ−1(X), w̃ := Φ−1(w) ∈ Y , so (CB) is satisfied for CY := CX

√
C2. �

Corollary 3.4. For any simply-connected bounded domain Ω in C which is of type 1-3

there exists a non S-admissible weight on ∂Ω.
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Proof: By Riemann Mapping Theorem there exists biholomorphism Φ : Ω → K(0, 1).

By Theorem 3.8 Φ has a smooth prolongation to ∂Ω. By Theorem 3.10 the weight µ ◦Φ,

where µ is a weight constructed in (3.5), is non S-admissible weight on ∂Ω. �

3.4.5 Weights on non-connected boundaries of domains

In this section we will prove theorem which states that in case of domain U in CN such

that ∂U is not connected ”S-admissibility”, in some sense, of a weight on one connected

component of ∂U is sufficient for this weight to be S-admissible on whole ∂U .

Theorem 3.11. Let Ω ⊂ CN be a bounded domain with the boundary of class C2. Let

G1, . . . Gn be domains in CN for N ≥ 2, such that CN \ Gj is connected, Gj ⊂ Ω,

Gj ∩Gk = ∅ for j 6= k and ∂Gj be of class C2. Let µ be S-admissible weight on ∂Ω and let

Ψ be a weight on ∂U , where U := Ω\(G1 ∪ · · · ∪Gn), such that Ψ(w) = µ(w) for w ∈ ∂Ω.

Then Ψ is S-admissible weight on U . In addition, if Ψ|Gj
is integrable on ∂Gj for any

j, the map L2H(∂Ω, µ) 3 f 7→ Tf := f|U ∈ L2H(∂U,Ψ) is a continuous isomorphism of

Hilbert spaces.

Proof: Let X be a compact subset in U . Then X ⊂ Ω and there exists CX > 0, such

that for any f ∈ B̃(Ω, µ) and any z ∈ X

|f(z)| ≤ CX ||f ||µ

On the other hand, if g ∈ B̃(U,Ψ), then by Hartogs Prolongation Theorem, there exists

g̃ continuous on Ω and holomorphic on Ω, such that g̃|U = g. It is obvious that∫
∂Ω

|g̃(w)|2µ(w)dS ≤
∫
∂U

|g̃(w)|2Ψ(w)dS = ||g||2Ψ < ∞.

Then

||g̃||µ ≤ ||g||Ψ (3.8)

and g̃ ∈ B̃(Ω, µ).
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For any z ∈ X we have

|g(z)| = |g̃(z)| ≤ CX ||g̃||µ ≤ CX ||g||Ψ.

Since g is an arbitrary element of B̃(U,Ψ), we see that Ψ is an S-admissible weight on

∂U .

Moreover, if Ψ|∂Gj
is integrable on any ∂Gj, then for any f ∈ B̃(Ω, µ) we have that

f|U ∈ B̃(U,Ψ) and the prolongation B̃(U,Ψ) 3 g 7→ g̃ ∈ B̃(Ω, µ) is unicly defined, then

it is an inverse of T . By (3.8), T−1 is bounded and by Banach Inverse Theorem, T is

continuous. Since condition (CB) is fulfilled, the same considerations can be applied to a

function f ∈ L2H(∂U,Ψ). �

In the case N = 1, Theorem is not true. For example, if Ω := K := K(0, 1) = {w ∈ C :

|w| < 1}, G := K(0, 1
2
), µ ≡ 1 and Ψ ≡ 1, the function

g(w) =
1

w
, w ∈ U,

is an element of L2H(∂U,Ψ), but it has no prolongation to a function g̃ ∈ L2H(∂Ω, µ).

However, using similar argument as in the proof of the Theorem, we can show that if

N = 1, then the operator of restriction T : L2H(∂Ω, µ) → L2H(∂U,Ψ) is continuous

and one-to-one map onto its image, and that T (L2H(∂Ω, µ)) is a closed subspace of

L2H(∂U,Ψ).

3.5 Properties of the weighted Szegö kernel

Theorem 3.12. If f ∈ H(Ω) is a function such that f(z) 6= 0 for any z ∈ Ω, then

µ(z) := |f(z)|2 is an S-admissible weight on ∂Ω, L2H(∂Ω, µ) = L2H(∂Ω, 1) as a set and

the Szegö kernel Sµ of L2H(∂Ω, µ) is equal to

Sµ(z, w) =
1

f(z)f(w)
S1(z, w),

where S1 is the Szegö kernel of L2H(∂Ω, 1).
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Proof: Because f is a continuous function on a compact set and f(z) 6= 0, |f(z)| >

c > 0, on ∂Ω, which means that µ(z) = |f(z)|2 is an S-admissible weight by corollary 3.1.

Because f is a continuous function on a compact set, we also have |f(z)| < C < ∞, so

L2H(∂Ω, 1) and L2H(∂Ω, µ) are equal as sets in consequence of Proposition (3.2).

Since S1(z, ·) ∈ L2H(∂Ω, µ) for any fixed z ∈ Ω, it is also true that

1

f(z)

1

f(·)
S1(z, ·) ∈ L2H(∂Ω, µ),

as a product of two holomorphic functions, which is square-integrable on ∂Ω, by definition

3.6.

Moreover, for any g ∈ B̃(Ω, µ) we have

〈Sµ(z, ·)|g〉µ =

∫
∂Ω

g(w)
1

f(z)

1

f(w)
S1(z, w)|f(w)|2dS(w)

=

∫
∂Ω

g(w)
1

f(z)
f(w)S1(z, w)dS(w).

By the reproducing property of S1(z, ·) for functions from L2H(∂Ω, 1) = L2H(∂Ω, µ)∫
∂Ω

g(w)
1

f(z)
f(w)S1(z, w)dS(w) = g(z)

f(z)

f(z)
= g(z),

so Sµ(z, ·) has reproducing property for functions from L2H(∂Ω, µ). �

It is well-known that classical (i.e. for weight equal to 1) Szegö kernel for the unit ball in

Cn is given by

S1(z, w) =
(n− 1)!

2πn

1

1 − 〈z|w〉n

See [Krantz2002] for more details. Using this fact and Theorem 3.12 allows us to give

direct formula for the weighted Szegö kernel of the unit ball for weights which are square

of modulus of holomorphic function.

Theorem 3.13. Let µ1, µ2 be S-admissible weights on ∂Ω, such that µ1(w) ≤ µ2(w) for

almost every w ∈ ∂Ω. Then

Sµ2(z, z) ≤ Sµ1(z, z)

for every z ∈ Ω.
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Proof: First let us assume that Sµ1(z, z) and Sµ2(z, z) are greater than 0. By Theorem

1.3 it is true that

1

Sµ1(z, z)
=

∫
∂Ω

∣∣∣∣Sµ1(z, w)

Sµ1(z, z)

∣∣∣∣2 µ1(w)dS ≤
∫
∂Ω

∣∣∣∣Sµ2(z, w)

Sµ2(z, z)

∣∣∣∣2 µ1(w)dS.

Since µ1 ≤ µ2, ∫
∂Ω

∣∣∣∣Sµ2(z, w)

Sµ2(z, z)

∣∣∣∣2 µ1(w)dS ≤
∫
∂Ω

∣∣∣∣Sµ2(z, w)

Sµ2(z, z)

∣∣∣∣2 µ2(w)dS.

Because ∫
∂Ω

∣∣∣∣Sµ2(z, w)

Sµ2(z, z)

∣∣∣∣2 µ2(w)dS =
1

Sµ2(z, z)
,

in conclusion we have that

1

Sµ1(z, z)
≤ 1

Sµ2(z, z)
,

which ends the proof.

Now let Sµ1(z, z) = 0. Then by Theorem 1.2 we have Sµ1(z, ·) ≡ 0. Since µ1 ≤ µ2,

we have Sµ2(z, ·) ∈ L2H(U, µ1). Then by Theorem 1.2 again we have Sµ2(z, ·) ≡ 0, so

Sµ2(z, z) ≤ Sµ1(z, z).

If Sµ2(z, z) = 0, then of course Sµ2(z, z) ≤ Sµ1(z, z). �

3.6 Dependence of the Szegö kernel on a weight of in-

tegration

As it was stated before, the problem of dependence of weighted Szegö kernel on weights

of integration was investigated in few articles. In all of them, however, only continuous

weights were considered. Then it is natural to prove some theorems which state how

weighted Szegö kernel depends on a weight in the case in which weight is not necessarily

continuous.

At the beginning, we will introduce the appropriate topology in the set SAW(∂Ω) of
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S-admissible weights on ∂Ω. Let us recall that we denote by ≈ the equivalence rela-

tion on SAW(∂Ω) defined as follows: for any µ1, µ2 ∈ SAW(∂Ω) µ1 ≈ µ2 if and only if

L2H(∂Ω, µ1) is equal as a vector space to L2H(∂Ω, µ2). Just like at work [Maj2009] it

can be proved that in this case norms in L2H(∂Ω, µ1) and L2H(∂Ω, µ2) are equivalent,

i.e. there are positive constants c and C, such that for any f ∈ L2H(∂Ω, µ1) we have

c||f ||µ2 ≤ ||f ||µ1 ≤ C||f ||µ2 .

For any µ ∈ SAW(∂Ω) denote by SAW(∂Ω, µ) the equivalence class of µ with respect

to relation ≈. Note that SAW(∂Ω, µ) contains infinitely many elements, because for any

function g ∈ L∞(∂Ω) such that

essinfz∈∂Ωg(z) > 0

the ordinary product gµ is an element of SAW(∂Ω, µ) (see Proposition (3.2)) and if g1 6= g2,

then g1µ 6= g2µ.

On SAW(∂Ω, µ) we consider the map:

SAW(∂Ω, µ) 3 ν 7→ Bµ(ν) := 〈−; ·〉ν ∈ Her(L2H(∂Ω, µ)),

where Her(H) denotes the real Banach space of all continuous hermitian forms on a Hilbert

space H with the standard Banach space norm:

||B|| := sup
||x||=||y||=1

|B(x, y)|, B ∈ Her(H).

We denote by τµ the weakest topology on SAW(∂Ω, µ) with respect to which the

map Bµ is continuous. By Lax-Milgram Theorem each inner (hermitian) product 〈−|·〉ν

equivalent to 〈−|·〉µ on L2H(∂Ω, µ) uniquely determines an invertible positive definite

continuous operator Aν on L2H(∂Ω, µ), such that

〈f |g〉ν = 〈Aνf |g〉µ, f, g ∈ L2H(∂Ω, µ).

Moreover, if Her+(L2H(∂Ω, µ)) denotes the cone in Her(L2H(∂Ω, µ)) of all positive defi-

nite hermitian forms (the set of hermitian products) on L2H(∂Ω, µ) equivalent to 〈−|·〉µ,
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then the map

Her+(L2H(∂Ω, µ)) 3 ν 7→ Ψµ(ν) := Aν ∈ L(L2H(∂Ω, µ))

is an isometry (onto its image) with respect to standard norms in Her(L2H(∂Ω, µ)) and

in the space L(L2H(∂Ω, µ)) of all bounded endomorphisms of L2H(∂Ω, µ). Therefore the

map Ψµ is a homeomorphism. Hence τµ is the weakest topology with respect to which

the map Ψµ ◦Bµ is continuous.

On the other hand, if µ1 ≈ µ and ν ∈ SAW(∂Ω, µ) = SAW(∂Ω, µ1), then

〈f |g〉ν = 〈(Ψµ1 ◦Bµ1)(ν)f |g〉µ1 = 〈(Ψµ ◦Bµ)(µ1)(Ψµ1 ◦Bµ1)(ν)f |g〉µ.

We can write

〈(Ψµ ◦Bµ)(µ1)(Ψµ1 ◦Bµ1)(ν)f |g〉µ = 〈G ◦ [(Ψµ1 ◦Bµ1)(ν)]f |g〉µ

for f, g ∈ L2H(∂Ω, µ), where G : L(L2H(∂Ω, µ)) → L(L2H(∂Ω, µ) is the map of compo-

sition with constant invertible operator

G(A) := [(Ψµ ◦Bµ)(µ1)] ◦ A,A ∈ L(L2H(∂Ω, µ)).

Of course, such a map G is a homeomorphism of L(L2H(∂Ω, µ)). Hence Ψµ ◦ Bµ =

G ◦ (Ψµ1 ◦ Bµ1) and therefore τµ = τµ1 . It means that the topology τµ does not depend

on the choice of an equivalence class representative from SAW(∂Ω, µ).

Let us consider the family
⋃

µ∈SAW(∂Ω) τµ of subsets of SAW(∂Ω). It is, of course, the

base of same topology τ in SAW(∂Ω). From now on we will consider SAW(∂Ω) as a

topological space endowed with this topology.

Note that for any µ ∈ SAW(∂Ω) the set SAW(∂Ω, µ) is open in SAW(∂Ω), but it is

also closed, because

SAW(∂Ω) \ SAW(∂Ω, µ) =
⋃

ν∈SAW(∂Ω)\SAW(∂Ω,µ)

SAW(∂Ω, ν).

Moreover from the definition of SAW(∂Ω) it follows almost immediately that for any

ν1, ν2 ∈ SAW(∂Ω, µ) and any t ∈ [0, 1] we have

tν1 + (1 − t)ν2 ∈ SAW(∂Ω, µ).
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In addition, the map

[0, 1] 3 t 7→ (Ψµ◦Bµ)(tν1+(1−t)ν2)) = t(Ψµ◦Bµ)(ν1)+(1−t)(Ψµ◦Bµ)(ν2) ∈ L(L2H(∂Ω, µ))

is evidently continuous and therefore the map

[0, 1] 3 t 7→ tν1 + (1 − t)ν2 ∈ SAW(∂Ω, µ)

is continuous. Hence SAW(∂Ω, µ) is connected and consequently it is a connected com-

ponent of SAW(∂Ω) with respect to τ .

It may happen for some µ ∈ SAW(∂Ω) that Bµ is not 1 − 1 map. In this case τµ is

not a Haussdorf topology. In extreme cases it may happen that L2H(∂Ω, µ) = {0} and

Bµ ≡ 0. On the other hand, in cases imporant for applications (for example, when µ is

bounded from above and below by non-zero constants) Bµ is 1 − 1 mapping and τµ is

Haussdorf. Indeed, any weight bounded from above and below by non-zero constant is an

element of SAW(∂Ω, 1), as a consequence of Proposition (3.2). For such µ all polynomials

are elements of L2H(∂Ω, µ) and it is easy to see that B1 is an injection.

Our results are true in any case.

Now let us recall this theorem (see Theorem 5.1. in [Pasternak1998] for more details):

Theorem 3.14. Let H be a Hilbert space and V be a closed vector subspace of H. Let P (·)

denote a mapping that assigns to each positive defined and invertible operator A ∈ L(H)

the projection of H onto V orthogonal with respect to the hermitian product

〈f |g〉A := 〈f |Ag〉, f, g ∈ H.

Then P (·) is analytic with respect to the natural analytic structure on an open set of all

positively defined and invertible operators in H.

We are ready to prove main results of this section.
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Theorem 3.15. For any µ ∈ SAW(∂Ω) denote by Sµ the weighted Szegö kernel of

L2H(∂Ω, µ) defined on Ω × Ω. Then for any ν ∈ SAW(∂Ω, µ) and any z ∈ Ω the map

SAW(∂Ω, µ) 3 ν 7→ Sν(z, ·) ∈ L2H(∂Ω, µ)

is continuous with respect to the topology τµ on SAW(∂Ω, µ) and the Hilbert space topology

on L2H(∂Ω, µ).

Proof: Fix z ∈ Ω. We know that Sν(z, ·) is a vector representing functional of point

evaluation Ez : f 7→ f(z) in the sense of Riesz Representation Theorem used for the

space L2H(∂Ω, µ) (i.e. in L2H(∂Ω, µ) endowed with the inner product 〈−|·〉ν). Let Pν

denote orthogonal projector onto kerEz in L2H(∂Ω, ν). It follows from the proof of Riesz

Theorem that Sν(z, ·) can be expressed in terms of Pν in this way:

Fix f ∈ L2H(∂Ω, µ) (f does not depend on ν), such that Ez = f(z) 6= 0. (If kerEz =

L2H(∂Ω, µ), then Sν(z, ·) = 0 for any ν ∈ SAW(∂Ω, µ) by Theorem 1.2 and therefore our

theorem is true.)

Let gν := (I − Pν)f , where I denotes the identity operator of L2H(∂Ω, µ). Then

gν 6= 0 for any ν ∈ SAW(∂Ω, µ). Using the fact that the subspace (kerEz)
⊥ν orthogonal

to kerEz in L2H(∂Ω, ν) is one-dimensional, the following formula can be easily derived

Sν(z, ·) =
Ez(gν)

||gν ||2ν
gν =

Ez((I − Pν)f)

||(I − Pν)f ||2ν
(I − Pν)f.

In this formula Ez, I and f does not depend on ν. On the other hand, if h ∈ L2H(∂Ω, µ),

then by definition of τµ the map

SAW(∂Ω, µ) 3 ν 7→ ||h||2ν = Bν(h, h) ∈ R

is continuous. (We used the same notation as in the definition of topology τν .) Moreover,

by standard arguments from the basic course of calculus, we get that if a map

SAW(∂Ω, µ) 3 ν 7→ gν ∈ L2H(∂Ω, µ)

is continuous, then the map

SAW(∂Ω, µ) 3 ν 7→ ||gν ||2ν = Bν(gν , gν) ∈ R
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is continuous.

To complete the proof of the theorem it is enough to show that the map

SAW(∂Ω, µ) 3 ν 7→ Pν ∈ L(L2H(∂Ω, µ))

is continuous. But this is a direct consequence of Theorem 3.14.

In our case, taking H = L2H(∂Ω, µ), V = kerEz and A = (Ψµ ◦ Bµ)(ν) for ν ∈

SAW(∂Ω, µ), we obtain that the map

SAW(∂Ω, µ) 3 ν 7→ Pν = P ((Ψµ ◦Bµ)(ν)) ∈ L(L2H(∂Ω, µ))

is continuous. This ends the proof of the theorem. �

We could formulate Theorem 3.15 as follows: for any z ∈ Ω the map

SAW(∂Ω) 3 µ 7→ Sµ(z, ·) ∈
⋃

ν∈SAW(∂Ω)

L2H(∂Ω, ν)

is continuous. This requires, however, introducing a topology on the set⋃
ν∈SAW(∂Ω)

L2H(∂Ω, ν)

that is locally compatible with the topologies of Hilbert spaces on its components. It is

possible, but we give up on it, because it complicates the considerations and is not needed

in this thesis.

3.7 Applications to Complex Analysis

Content of this section is based mainly on [Żynda2019b].

Maximum modulus principle allows us to show that if two holomorphic functions are

equal on a boundary of some bounded domain, then they are equal on the whole domain.

In this section we will use the concept of weighted Szegö kernel to prove more general

theorem:
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Theorem 3.16. Let Ω be a bounded domain with a boundary of finite measure and of

class C2. Let f, g : Ω → C, holomorphic on Ω be functions such that |f(z)| = |g(z)| on

∂Ω and f(z), g(z) 6= 0 for z ∈ Ω. Then |f(z)| = |g(z)| for z ∈ Ω.

Assumption that f(z), g(z) 6= 0 for z ∈ Ω is necessary, because e.g. functions zk and

zl for k 6= l have the same modulus on ∂K(0, 1), but their modulus is not the same on

whole K(0, 1) := {z ∈ C : |z| < 1}.

Proof of the Theorem: By Theorem 3.12 Szegö kernel of L2H(∂Ω, µ) for µ = |f |2

is equal to

Sµ(z, z) =
1

|f(z)|2
S1(z, z)

and at once

Sµ(z, z) =
1

|g(z)|2
S1(z, z),

where S1 is Szegö kernel of L2H(∂Ω, 1). So we have

1

|f(z)|2
S1(z, z) =

1

|g(z)|2
S1(z, z).

S1(z, z) is given for any z ∈ Ω, so that equality must be true on whole Ω. By Proposition

1.1, S1(z, z) > 0, so we can divide both sides of the equation by S1(z, z) to get |f(z)| =

|g(z)| on whole Ω. �

Corollary 3.5. If f : Ω → C is holomorphic on Ω and |f(z)| = c for z ∈ ∂Ω and f(z) 6= 0

for z ∈ Ω, then f is constant on Ω.

Proof: Function g equal to c on whole Ω satisfies assumptions of the corollary. By

Theorem 3.16, |f(z)| = |g(z)| for any z ∈ Ω, so |f(z)| = c on whole Ω. By Riemann-

Cauchy equations, if a holomorphic function f has constant modulus on some opein

domain, then it is constant on the whole domain. �

Note that Theorem 3.16 can be proved using elementary complex analysis. Indeed, if
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f and g are holomorphic and non-zero on Ω, then f
g

and g
f

are also holomorphic and

non-zero on Ω. We have
∣∣∣f(z)g(z)

∣∣∣ = 1 and
∣∣∣ g(z)f(z)

∣∣∣ = 1 on ∂Ω. By maximum modulus principle

we conclude that
∣∣∣f(z)g(z)

∣∣∣ = 1 on Ω. �

Note also that the unique function from Riemann Mapping Theorem can be described us-

ing classical (i.e. with a weight equal to 1 almost everywhere) Szegö kernel (see [Bell2015]).

3.8 Connection between Szegö and Poisson Kernels

Definition 3.7. Let S1 be a Szegö kernel of L2H(∂Ω, 1). Function P defined in the

following way

P(z, w) :=
|S1(z, w)|2

S1(z, z)

is called a Poisson-Szegö kernel of domain Ω.

It is easy to see that for any f ∈ L2H(∂Ω, 1) we have∫
∂Ω

P(z, w)f(w)dS(w) = f(z).

Theorem 3.17. Let Ω be simply connected domain in R2 = C1 with a boundary of class

C2. Then

P (z, w) = P(z, w).

For the proof see [Bergman1970]. Note also that for higher dimensions P can never

be expected to be equal to P , because their singularities are of different nature.
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functions, Mathematica Japonica 29, 1984.

[Uehara1995] M. Uehara, On the weighted Szegö kernels, Mathematica Japonica 42,
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